Skip to main content
Log in

Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A soft and flexible wearable sweat epidermal microfluidic device capable of simultaneously stimulating, collecting, and electrochemically analyzing sweat is demonstrated. The device represents the first system integrating an iontophoretic pilocarpine delivery system around the inlet channels of epidermal polydimethylsiloxane (PDMS) microfluidic device for sweat collection and analysis. The freshly generated sweat is naturally pumped into the fluidic inlet without the need of exercising. Soft skin-mounted systems, incorporating non-invasive, on-demand sweat sampling/analysis interfaces for tracking target biomarkers, are in urgent need. Existing skin conformal microfluidic-based sensors for continuous monitoring of target sweat biomarkers rely on assays during intense physical exercising. This work demonstrates the first example of combining sweat stimulation, through transdermal pilocarpine delivery, with sample collection through a microfluidic channel for real-time electrochemical monitoring of sweat glucose, in a fully integrated soft and flexible multiplexed device which eliminates the need of exercising. The on-body operational performance and layout of the device were optimized considering the fluid dynamics and evaluated for detecting sweat glucose in several volunteers. Furthermore, the microfluidic monitoring device was integrated with a real-time wireless data transmission system using a flexible electronic board PCB conformal with the body. The new microfluidic platform paves the way to real-time non-invasive monitoring of biomarkers in stimulated sweat samples for diverse healthcare and wellness applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev. 2019;48:1465–91. https://doi.org/10.1039/c7cs00730b.

    Article  CAS  PubMed  Google Scholar 

  2. Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, et al. Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res. 2018;51:2820–8. https://doi.org/10.1021/acs.accounts.8b00451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sensors Actuators, B Chem. 2015;211:403–18. https://doi.org/10.1016/j.snb.2015.01.077.

    Article  CAS  Google Scholar 

  4. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol. 2020;38:217–24. https://doi.org/10.1038/s41587-019-0321-x.

    Article  CAS  PubMed  Google Scholar 

  5. Sempionatto JR, Khorshed AA, Ahmed A, De Loyola E Silva AN, Barfidokht A, Yin L, et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sensors. 2020;5:1804–13. https://doi.org/10.1021/acssensors.0c00604.

  6. Cheng Y, Wang K, Xu H, Li T, Jin Q, Cui D. Recent developments in sensors for wearable device applications. Anal Bioanal Chem. 2021;413:6037–57. https://doi.org/10.1007/s00216-021-03602-2.

    Article  CAS  PubMed  Google Scholar 

  7. Bauer M, Wunderlich L, Weinzierl F, Lei Y, Duerkop A, Alshareef HN, et al. Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem. 2021;413:763–77. https://doi.org/10.1007/s00216-020-02939-4.

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Zheng J, Liu L, Xu L. Application of microfluidics in wearable devices. Small Methods. 2019;3:1–17. https://doi.org/10.1002/smtd.201900688.

    Article  CAS  Google Scholar 

  9. Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal Chem. 2019;92:378–96. https://doi.org/10.1021/acs.analchem.9b04668.

    Article  CAS  PubMed  Google Scholar 

  10. Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem. 2019;12:1–22. https://doi.org/10.1146/annurev-anchem-061318-114910.

    Article  Google Scholar 

  11. Min J, Sempionatto JR, Teymourian H, Wang J, Gao W. Wearable electrochemical biosensors in North America. Biosens Bioelectron. 2021;172. https://doi.org/10.1016/j.bios.2020.112750.

  12. Sempionatto JR, Lin M, Yin L, De la paz E, Pei K, Sonsa-ard T, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng. 2021;5:737–48. https://doi.org/10.1038/s41551-021-00685-1.

  13. Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 2016. https://doi.org/10.1126/scitranslmed.aaf2593

  14. Kim SB, Lee KH, Raj MS, Lee B, Reeder JT, Koo J, et al. Soft, Skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small. 2018;14:1–9. https://doi.org/10.1002/smll.201802876.

    Article  CAS  Google Scholar 

  15. Bandodkar AJ, Choi J, Lee SP, Jeang WJ, Agyare P, Gutruf P, et al. Soft, Skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat. Adv Mater. 2019;31:1–9. https://doi.org/10.1002/adma.201902109.

    Article  CAS  Google Scholar 

  16. Nyein HYY, Tai LC, Ngo QP, Chao M, Zhang GB, Gao W, et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sensors. 2018;3:944–52. https://doi.org/10.1021/acssensors.7b00961.

    Article  CAS  PubMed  Google Scholar 

  17. Yeo JC, Kenry, Lim CT. Emergence of microfluidic wearable technologies. Lab Chip. 2016;16:4082–90. https://doi.org/10.1039/c6lc00926c.

  18. Choi J, Kang D, Han S, Kim SB, Rogers JA. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv Healthc Mater. 2017;6:1–10. https://doi.org/10.1002/adhm.201601355.

    Article  CAS  Google Scholar 

  19. Wang S, Chinnasamy T, Lifson MA, Inci F, Demirci U. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 2016;34:909–21. https://doi.org/10.1016/j.tibtech.2016.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bandodkar AJ, Gutruf P, Choi J, Lee KH, Sekine Y, Reeder JT, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv. 2019;5:1–16. https://doi.org/10.1126/sciadv.aav3294.

    Article  CAS  Google Scholar 

  21. Heikenfeld J, Jajack A, Feldman B, Granger SW, Gaitonde S, Begtrup G, et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol. 2019;37:407–19. https://doi.org/10.1038/s41587-019-0040-3.

    Article  CAS  PubMed  Google Scholar 

  22. Martín A, Kim J, Kurniawan JF, Sempionatto JR, Moreto JR, Tang G, et al. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sensors. 2017;2:1860–8. https://doi.org/10.1021/acssensors.7b00729.

    Article  CAS  PubMed  Google Scholar 

  23. Hauke A, Simmers P, Ojha YR, Cameron BD, Ballweg R, Zhang T, et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip. 2018;18:3750–9. https://doi.org/10.1039/c8lc01082j.

    Article  CAS  PubMed  Google Scholar 

  24. Alizadeh A, Burns A, Lenigk R, Gettings R, Ashe J, Porter A, et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip. 2018;18:2632–41. https://doi.org/10.1039/c8lc00510a.

    Article  CAS  PubMed  Google Scholar 

  25. Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV. Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sensors. 2021;6:1174–86. https://doi.org/10.1021/acssensors.0c02446.

    Article  CAS  PubMed  Google Scholar 

  26. Sempionatto JR, Martin A, García-Carmona L, Barfidokht A, Kurniawan JF, Moreto JR, et al. Skin-worn soft microfluidic potentiometric detection system. Electroanalysis. 2019;31:239–45. https://doi.org/10.1002/elan.201800414.

    Article  CAS  Google Scholar 

  27. Ma B, Chi J, Xu C, Ni Y, Zhao C, Liu H. Wearable capillary microfluidics for continuous perspiration sensing. Talanta. 2020;212. https://doi.org/10.1016/j.talanta.2020.120786.

  28. Ichimura Y, Kuritsubo T, Nagamine K, Nomura A, Shitanda I, Tokito S. A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal Bioanal Chem. 2021;413:1883–91. https://doi.org/10.1007/s00216-021-03156-3.

    Article  CAS  PubMed  Google Scholar 

  29. Nyein HYY, Bariya M, Tran B, Ahn CH, Brown BJ, Ji W, et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun. 2021;12:1–13. https://doi.org/10.1038/s41467-021-22109-z.

    Article  CAS  Google Scholar 

  30. Bariya M, Li L, Ghattamaneni R, Ahn CH, Nyein HYY, Tai LC, et al. Glove-based sensors for multimodal monitoring of natural sweat. Sci Adv. 2020;6:1–10. https://doi.org/10.1126/sciadv.abb8308.

    Article  CAS  Google Scholar 

  31. Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-based stressless cortisol sensing. Adv Mater. 2021;33:1–11. https://doi.org/10.1002/adma.202008465.

    Article  CAS  Google Scholar 

  32. Sempionatto JR, Moon JM, Wang J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sensors. 2021;6:1875–83. https://doi.org/10.1021/acssensors.1c00139.

    Article  CAS  PubMed  Google Scholar 

  33. Moon J, Teymourian H, De la Paz E, Sempionatto JR, Mahato K, Sonsa-ard T, et al. Non-invasive sweat-based tracking of L-dopa pharmacokinetic profiles following an oral tablet administration. Angew Chemie. 2021;133:19222–6. https://doi.org/10.1002/ange.202106674.

    Article  Google Scholar 

  34. Yin L, Moon JM, Sempionatto JR, Lin M, Cao M, Trifonov A, et al. A passive perspiration biofuel cell: high energy return on investment. Joule. 2021;5:1888–904. https://doi.org/10.1016/j.joule.2021.06.004.

    Article  CAS  Google Scholar 

  35. Su B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components Young Investigators in Analytical and Bioanalytical Science. Anal Bioanal Chem. 2016;408:2781–91. https://doi.org/10.1007/s00216-015-9216-y.

    Article  CAS  PubMed  Google Scholar 

  36. Kuwayama K, Tsujikawa K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H. Time-course measurements of caffeine and its metabolites extracted from fingertips after coffee intake: a preliminary study for the detection of drugs from fingerprints. Anal Bioanal Chem. 2013;405:3945–52. https://doi.org/10.1007/s00216-012-6569-3.

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sensors. 2016;1:1011–9. https://doi.org/10.1021/acssensors.6b00356.

    Article  CAS  Google Scholar 

  38. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci. 2018;5:1800880. https://doi.org/10.1002/advs.201800880.

    Article  CAS  Google Scholar 

  39. Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem. 2015;87:394–8. https://doi.org/10.1021/ac504300n.

    Article  CAS  PubMed  Google Scholar 

  40. Emaminejad S, Gao W, Wu E, Davies ZA, Nyein HYY, Challa S, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci USA. 2017;114:4625–30. https://doi.org/10.1073/pnas.1701740114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nyein HYY, Bariya M, Kivimäki L, Uusitalo S, Liaw TS, Jansson E, et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci Adv. 2019;5. https://doi.org/10.1126/sciadv.aaw9906.

  42. Lin H, Zhao Y, Lin S, Wang B, Yeung C, Cheng X, et al. A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing. Lab Chip. 2019;19:2844–53. https://doi.org/10.1039/c9lc00418a.

    Article  CAS  PubMed  Google Scholar 

  43. Peng R, Sonner Z, Hauke A, Wilder E, Kasting J, Gaillard T, et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. Lab Chip. 2016;16:4415–23. https://doi.org/10.1039/c6lc01013j.

    Article  CAS  PubMed  Google Scholar 

  44. Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37:389–406. https://doi.org/10.1038/s41587-019-0045-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: a review. Talanta. 2018;177:163–70. https://doi.org/10.1016/j.talanta.2017.08.077.

    Article  CAS  PubMed  Google Scholar 

  46. Vettoretti M, Cappon G, Acciaroli G, Facchinetti A, Sparacino G. Continuous glucose monitoring: current use in diabetes management and possible future applications. J Diabetes Sci Technol. 2018;12:1064–71. https://doi.org/10.1177/1932296818774078.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal Chem. 2019;91:3778–83. https://doi.org/10.1021/acs.analchem.8b05928.

    Article  CAS  PubMed  Google Scholar 

  48. Choi J, Xue Y, Xia W, Ray TR, Reeder JT, Bandodkar AJ, et al. Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab Chip. 2017;17:2572–80. https://doi.org/10.1039/c7lc00525c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015;9. https://doi.org/10.1063/1.4921039.

  50. Sonner Z, Wilder E, Gaillard T, Kasting G, Heikenfeld J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab Chip. 2017;17:2550–60. https://doi.org/10.1039/c7lc00364a.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense (grant number: HDTRA 1–16-1–0013) and the UCSD Center of Wearable Sensors (CWS). J. R. S. received fellowship from CNPq (grant number: 216981/2014–0), G. B. received fellowship from the Scientific and Technological Research Council of Turkey (TUBITAK 2219). N. F. A. received fellowship from Capes/PDSE—Finance Code 001 (Program 194 – Process—88881.186873/2018–01). E.D.l.P. received support from a UC MEXUS–CONACYT collaborative fellowship (2017–2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Wang or Juliane R. Sempionatto.

Ethics declarations

Ethics approval

Human studies were conducted in strict compliance following a protocol approved by the Institutional Review Board (IRB) at the University of California, San Diego. All participants provided written informed consent prior to each study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1598 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolat, G., De la Paz, E., Azeredo, N.F. et al. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 414, 5411–5421 (2022). https://doi.org/10.1007/s00216-021-03865-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03865-9

Keywords

Navigation