Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281–96. https://doi.org/10.1038/nrm.2017.138.
CAS
Article
PubMed
Google Scholar
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. https://doi.org/10.1038/nrm2330.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gross RW, Han X. Lipidomics at the interface of structure and function in systems biology. Chem Biol. 2011;18(3):284–91. https://doi.org/10.1016/j.chembiol.2011.01.014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Casares D, Escriba PV, Rossello CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167–96. https://doi.org/10.3390/ijms20092167
Martinez-Seara H, Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Effect of double bond position on lipid bilayer properties: insight through atomistic simulations. J Phys Chem B. 2007;111(38):11162–8. https://doi.org/10.1021/jp071894d.
CAS
Article
PubMed
Google Scholar
Martinez-Seara H, Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. Biophys J. 2008;95(7):3295–305. https://doi.org/10.1529/biophysj.108.138123.
CAS
Article
PubMed
PubMed Central
Google Scholar
Perillo VL, Fernandez-Nievas GA, Valles AS, Barrantes FJ, Antollini SS. The position of the double bond in monounsaturated free fatty acids is essential for the inhibition of the nicotinic acetylcholine receptor. Biochim Biophys Acta. 2012;1818(11):2511–20. https://doi.org/10.1016/j.bbamem.2012.06.001.
CAS
Article
PubMed
Google Scholar
Yang X, Sheng W, Sun GY, Lee JC. Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int. 2011;58(3):321–9. https://doi.org/10.1016/j.neuint.2010.12.004.
CAS
Article
PubMed
Google Scholar
Ridone P, Grage SL, Patkunarajah A, Battle AR, Ulrich AS, Martinac B. “Force-from-lipids” gating of mechanosensitive channels modulated by PUFAs. J Mech Behav Biomed Mater. 2018;79:158–67. https://doi.org/10.1016/j.jmbbm.2017.12.026.
CAS
Article
PubMed
Google Scholar
Boland LM, Drzewiecki MM. Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys. 2008;52(2):59–84. https://doi.org/10.1007/s12013-008-9027-2.
CAS
Article
PubMed
Google Scholar
Porta Siegel T, Ekroos K, Ellis SR. Reshaping lipid biochemistry by pushing barriers in structural lipidomics. Angew Chem Int Ed Engl. 2019;58(20):6492–501. https://doi.org/10.1002/anie.201812698.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lipidomics Standards Initiative Consortium. Lipidomics needs more standardization. Nat Metab. 2019;1(8):745–7. https://doi.org/10.1038/s42255-019-0094-z.
Article
Google Scholar
Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr. 2006;20(3):227–43. https://doi.org/10.1002/bmc.563.
CAS
Article
PubMed
Google Scholar
Hsu FF, Turk J. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2008;19(11):1681–91. https://doi.org/10.1016/j.jasms.2008.07.023.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hsu FF. Complete structural characterization of ceramides as [M-H](-) ions by multiple-stage linear ion trap mass spectrometry. Biochimie. 2016;130:63–75. https://doi.org/10.1016/j.biochi.2016.07.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ellis SR, Hughes JR, Mitchell TW, in het Panhuis M, Blanksby SJ. Using ambient ozone for assignment of double bond position in unsaturated lipids. Analyst. 2012;137(5):1100–10. https://doi.org/10.1039/c1an15864c.
CAS
Article
PubMed
Google Scholar
Thomas MC, Mitchell TW, Blanksby SJ. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J Am Chem Soc. 2006;128(1):58–9. https://doi.org/10.1021/ja056797h.
CAS
Article
PubMed
Google Scholar
Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2722–35. https://doi.org/10.1016/j.jchromb.2009.01.017.
CAS
Article
PubMed
Google Scholar
Deeley JM, Thomas MC, Truscott RJ, Mitchell TW, Blanksby SJ. Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. Anal Chem. 2009;81(5):1920–30. https://doi.org/10.1021/ac802395d.
CAS
Article
PubMed
Google Scholar
Ma X, Xia Y. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew Chem Int Ed Engl. 2014;53(10):2592–6. https://doi.org/10.1002/anie.201310699.
CAS
Article
PubMed
Google Scholar
Stinson CA, Xia Y. A method of coupling the Paterno-Buchi reaction with direct infusion ESI-MS/MS for locating the C=C bond in glycerophospholipids. Analyst. 2016;141(12):3696–704. https://doi.org/10.1039/c6an00015k.
CAS
Article
PubMed
Google Scholar
Franklin ET, Betancourt SK, Randolph CE, McLuckey SA, Xia Y. In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry. Anal Bioanal Chem. 2019;411(19):4739–49. https://doi.org/10.1007/s00216-018-1537-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Klein DR, Brodbelt JS. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2017;89(3):1516–22. https://doi.org/10.1021/acs.analchem.6b03353.
CAS
Article
PubMed
PubMed Central
Google Scholar
Klein DR, Feider CL, Garza KY, Lin JQ, Eberlin LS, Brodbelt JS. Desorption electrospray ionization coupled with ultraviolet photodissociation for characterization of phospholipid isomers in tissue sections. Anal Chem. 2018;90(17):10100–4. https://doi.org/10.1021/acs.analchem.8b03026.
CAS
Article
PubMed
PubMed Central
Google Scholar
Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm ultraviolet photodissociation mass spectrometry localizes cardiolipin unsaturations. Anal Chem. 2019;91(19):12509–16. https://doi.org/10.1021/acs.analchem.9b03278.
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc. 2017;139(44):15681–90. https://doi.org/10.1021/jacs.7b06416.
CAS
Article
PubMed
PubMed Central
Google Scholar
Takahashi H, Shimabukuro Y, Asakawa D, Yamauchi S, Sekiya S, Iwamoto S, Wada M, Tanaka K. Structural analysis of phospholipid using hydrogen abstraction dissociation and oxygen attachment dissociation in tandem mass spectrometry. Anal Chem. 2018;90(12):7230–8. https://doi.org/10.1021/acs.analchem.8b00322.
CAS
Article
PubMed
Google Scholar
Bouza M, Li Y, Wang AC, Wang ZL, Fernandez FM. Triboelectric nanogenerator ion mobility-mass spectrometry for in-depth lipid annotation. Anal Chem. 2021;93(13):5468–75. https://doi.org/10.1021/acs.analchem.0c05145.
CAS
Article
PubMed
Google Scholar
Li P, Jackson GP. Charge transfer dissociation of phosphocholines: gas-phase ion/ion reactions between helium cations and phospholipid cations. J Mass Spectrom. 2017;52(5):271–82. https://doi.org/10.1002/jms.3926.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang HJ, Hsu FF. Revelation of acyl double bond positions on fatty acyl coenzyme a esters by MALDI/TOF mass spectrometry. J Am Soc Mass Spectrom. 2020;31(5):1047–57. https://doi.org/10.1021/jasms.9b00139.
CAS
Article
PubMed
Google Scholar
Leopold J, Popkova Y, Engel KM, Schiller J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules. 2018;8(4):173–97. https://doi.org/10.3390/biom8040173.
CAS
Article
PubMed Central
Google Scholar
Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82(11):4648–51. https://doi.org/10.1021/ac100818g.
CAS
Article
PubMed
Google Scholar
Strohalm M, Hassman M, Kosata B, Kodicek M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom. 2008;22(6):905–8. https://doi.org/10.1002/rcm.3444.
CAS
Article
PubMed
Google Scholar
Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9-14. https://doi.org/10.1194/jlr.R800095-JLR200.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2673–95. https://doi.org/10.1016/j.jchromb.2009.02.033.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA. Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2005;16(4):491–504. https://doi.org/10.1016/j.jasms.2004.12.015.
CAS
Article
PubMed
Google Scholar
Hsu FF, Turk J. Toward total structural analysis of cardiolipins: multiple-stage linear ion-trap mass spectrometry on the [M - 2H + 3Li]+ ions. J Am Soc Mass Spectrom. 2010;21(11):1863–9. https://doi.org/10.1016/j.jasms.2010.07.003.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hsu FF, Turk J, Stewart ME, Downing DT. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2002;13(6):680–95. https://doi.org/10.1016/S1044-0305(02)00362-8.
CAS
Article
PubMed
Google Scholar
Pridmore CJ, Mosely JA, Sanderson JM. The reproducibility of phospholipid analyses by MALDI-MSMS. Analyst. 2011;136(12):2598–605. https://doi.org/10.1039/c0an00436g.
CAS
Article
PubMed
Google Scholar
Demeure K, Gabelica V, De Pauw EA. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J Am Soc Mass Spectrom. 2010;21(11):1906–17. https://doi.org/10.1016/j.jasms.2010.07.009.
CAS
Article
PubMed
Google Scholar
Soltwisch J, Dreisewerd K. Discrimination of isobaric leucine and isoleucine residues and analysis of post-translational modifications in peptides by MALDI in-source decay mass spectrometry combined with collisional cooling. Anal Chem. 2010;82(13):5628–35. https://doi.org/10.1021/ac1006014.
CAS
Article
PubMed
Google Scholar
Kocher T, Engstrom A, Zubarev RA. Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals. Anal Chem. 2005;77(1):172–7. https://doi.org/10.1021/ac0489115.
CAS
Article
PubMed
Google Scholar
Gao J, Cassady CJ. Negative ion production from peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(24):4066–72. https://doi.org/10.1002/rcm.3818.
CAS
Article
PubMed
Google Scholar
White T, Bursten S, Federighi D, Lewis RA, Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem. 1998;258(1):109–17. https://doi.org/10.1006/abio.1997.2545.
CAS
Article
PubMed
Google Scholar
Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: a brief review and perspective. J Mass Spectrom. 2020;55(12):e4614. https://doi.org/10.1002/jms.4614.
CAS
Article
PubMed
PubMed Central
Google Scholar
Murphy RC, Okuno T, Johnson CA, Barkley RM. Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry. Anal Chem. 2017;89(16):8545–53. https://doi.org/10.1021/acs.analchem.7b02375.
CAS
Article
PubMed
Google Scholar