Skip to main content

Structural characterization of phospholipids and sphingolipids by in-source fragmentation MALDI/TOF mass spectrometry

Abstract

Phospholipids (PLs) and sphingolipids (SLs) perform critical structural and biological functions in cells. The structure of these lipids, including the stereospecificity and double-bond position of fatty acyl (FA) chains, is critical in decoding lipid biology. In this study, we presented a simple in-source fragmentation (ISF) MALDI/TOF mass spectrometry method that affords complete structural characterization of PL and SL molecules. We analyzed several representative unsaturated lipid species including phosphatidylcholine (PC), plasmalogen PC (pPC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL), sphingomyelin (SM), and ceramide (Cer). Fragment ions reflecting the FA chains at sn–1 and sn–2 position, and those characteristics of the head groups of different PL classes, are readily identified. Specific fragment ions from cleavages of the C–C bond immediately adjacent to the cis C=C double-bond position(s) of FA chains and the trans C=C double bond of the sphingosine constituents allow precise localization of double bonds. The identities of the exemplary product ions from vinylic, allylic, and double-bond cleavages were also verified by LIFT-TOF/TOF. Identification of individual PL species in the lipid mixture was also carried out with ISF-MALDI/TOF. Together, this approach provides a simple yet effective method for structural characterization of PLs and SLs without the additional modification on the instrument hardware, and serves as a simple tool for the identification of lipids.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281–96. https://doi.org/10.1038/nrm.2017.138.

    CAS  Article  PubMed  Google Scholar 

  2. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. https://doi.org/10.1038/nrm2330.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Gross RW, Han X. Lipidomics at the interface of structure and function in systems biology. Chem Biol. 2011;18(3):284–91. https://doi.org/10.1016/j.chembiol.2011.01.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Casares D, Escriba PV, Rossello CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167–96. https://doi.org/10.3390/ijms20092167

  5. Martinez-Seara H, Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Effect of double bond position on lipid bilayer properties: insight through atomistic simulations. J Phys Chem B. 2007;111(38):11162–8. https://doi.org/10.1021/jp071894d.

    CAS  Article  PubMed  Google Scholar 

  6. Martinez-Seara H, Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M, Reigada R. Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. Biophys J. 2008;95(7):3295–305. https://doi.org/10.1529/biophysj.108.138123.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Perillo VL, Fernandez-Nievas GA, Valles AS, Barrantes FJ, Antollini SS. The position of the double bond in monounsaturated free fatty acids is essential for the inhibition of the nicotinic acetylcholine receptor. Biochim Biophys Acta. 2012;1818(11):2511–20. https://doi.org/10.1016/j.bbamem.2012.06.001.

    CAS  Article  PubMed  Google Scholar 

  8. Yang X, Sheng W, Sun GY, Lee JC. Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int. 2011;58(3):321–9. https://doi.org/10.1016/j.neuint.2010.12.004.

    CAS  Article  PubMed  Google Scholar 

  9. Ridone P, Grage SL, Patkunarajah A, Battle AR, Ulrich AS, Martinac B. “Force-from-lipids” gating of mechanosensitive channels modulated by PUFAs. J Mech Behav Biomed Mater. 2018;79:158–67. https://doi.org/10.1016/j.jmbbm.2017.12.026.

    CAS  Article  PubMed  Google Scholar 

  10. Boland LM, Drzewiecki MM. Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys. 2008;52(2):59–84. https://doi.org/10.1007/s12013-008-9027-2.

    CAS  Article  PubMed  Google Scholar 

  11. Porta Siegel T, Ekroos K, Ellis SR. Reshaping lipid biochemistry by pushing barriers in structural lipidomics. Angew Chem Int Ed Engl. 2019;58(20):6492–501. https://doi.org/10.1002/anie.201812698.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Lipidomics Standards Initiative Consortium. Lipidomics needs more standardization. Nat Metab. 2019;1(8):745–7. https://doi.org/10.1038/s42255-019-0094-z.

    Article  Google Scholar 

  13. Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr. 2006;20(3):227–43. https://doi.org/10.1002/bmc.563.

    CAS  Article  PubMed  Google Scholar 

  14. Hsu FF, Turk J. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2008;19(11):1681–91. https://doi.org/10.1016/j.jasms.2008.07.023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu FF. Complete structural characterization of ceramides as [M-H](-) ions by multiple-stage linear ion trap mass spectrometry. Biochimie. 2016;130:63–75. https://doi.org/10.1016/j.biochi.2016.07.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Ellis SR, Hughes JR, Mitchell TW, in het Panhuis M, Blanksby SJ. Using ambient ozone for assignment of double bond position in unsaturated lipids. Analyst. 2012;137(5):1100–10. https://doi.org/10.1039/c1an15864c.

    CAS  Article  PubMed  Google Scholar 

  17. Thomas MC, Mitchell TW, Blanksby SJ. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J Am Chem Soc. 2006;128(1):58–9. https://doi.org/10.1021/ja056797h.

    CAS  Article  PubMed  Google Scholar 

  18. Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2722–35. https://doi.org/10.1016/j.jchromb.2009.01.017.

    CAS  Article  PubMed  Google Scholar 

  19. Deeley JM, Thomas MC, Truscott RJ, Mitchell TW, Blanksby SJ. Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. Anal Chem. 2009;81(5):1920–30. https://doi.org/10.1021/ac802395d.

    CAS  Article  PubMed  Google Scholar 

  20. Ma X, Xia Y. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew Chem Int Ed Engl. 2014;53(10):2592–6. https://doi.org/10.1002/anie.201310699.

    CAS  Article  PubMed  Google Scholar 

  21. Stinson CA, Xia Y. A method of coupling the Paterno-Buchi reaction with direct infusion ESI-MS/MS for locating the C=C bond in glycerophospholipids. Analyst. 2016;141(12):3696–704. https://doi.org/10.1039/c6an00015k.

    CAS  Article  PubMed  Google Scholar 

  22. Franklin ET, Betancourt SK, Randolph CE, McLuckey SA, Xia Y. In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry. Anal Bioanal Chem. 2019;411(19):4739–49. https://doi.org/10.1007/s00216-018-1537-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Klein DR, Brodbelt JS. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2017;89(3):1516–22. https://doi.org/10.1021/acs.analchem.6b03353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Klein DR, Feider CL, Garza KY, Lin JQ, Eberlin LS, Brodbelt JS. Desorption electrospray ionization coupled with ultraviolet photodissociation for characterization of phospholipid isomers in tissue sections. Anal Chem. 2018;90(17):10100–4. https://doi.org/10.1021/acs.analchem.8b03026.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm ultraviolet photodissociation mass spectrometry localizes cardiolipin unsaturations. Anal Chem. 2019;91(19):12509–16. https://doi.org/10.1021/acs.analchem.9b03278.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc. 2017;139(44):15681–90. https://doi.org/10.1021/jacs.7b06416.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Takahashi H, Shimabukuro Y, Asakawa D, Yamauchi S, Sekiya S, Iwamoto S, Wada M, Tanaka K. Structural analysis of phospholipid using hydrogen abstraction dissociation and oxygen attachment dissociation in tandem mass spectrometry. Anal Chem. 2018;90(12):7230–8. https://doi.org/10.1021/acs.analchem.8b00322.

    CAS  Article  PubMed  Google Scholar 

  28. Bouza M, Li Y, Wang AC, Wang ZL, Fernandez FM. Triboelectric nanogenerator ion mobility-mass spectrometry for in-depth lipid annotation. Anal Chem. 2021;93(13):5468–75. https://doi.org/10.1021/acs.analchem.0c05145.

    CAS  Article  PubMed  Google Scholar 

  29. Li P, Jackson GP. Charge transfer dissociation of phosphocholines: gas-phase ion/ion reactions between helium cations and phospholipid cations. J Mass Spectrom. 2017;52(5):271–82. https://doi.org/10.1002/jms.3926.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Wang HJ, Hsu FF. Revelation of acyl double bond positions on fatty acyl coenzyme a esters by MALDI/TOF mass spectrometry. J Am Soc Mass Spectrom. 2020;31(5):1047–57. https://doi.org/10.1021/jasms.9b00139.

    CAS  Article  PubMed  Google Scholar 

  31. Leopold J, Popkova Y, Engel KM, Schiller J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules. 2018;8(4):173–97. https://doi.org/10.3390/biom8040173.

    CAS  Article  PubMed Central  Google Scholar 

  32. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82(11):4648–51. https://doi.org/10.1021/ac100818g.

    CAS  Article  PubMed  Google Scholar 

  33. Strohalm M, Hassman M, Kosata B, Kodicek M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom. 2008;22(6):905–8. https://doi.org/10.1002/rcm.3444.

    CAS  Article  PubMed  Google Scholar 

  34. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9-14. https://doi.org/10.1194/jlr.R800095-JLR200.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2673–95. https://doi.org/10.1016/j.jchromb.2009.02.033.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA. Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2005;16(4):491–504. https://doi.org/10.1016/j.jasms.2004.12.015.

    CAS  Article  PubMed  Google Scholar 

  37. Hsu FF, Turk J. Toward total structural analysis of cardiolipins: multiple-stage linear ion-trap mass spectrometry on the [M - 2H + 3Li]+ ions. J Am Soc Mass Spectrom. 2010;21(11):1863–9. https://doi.org/10.1016/j.jasms.2010.07.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Hsu FF, Turk J, Stewart ME, Downing DT. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2002;13(6):680–95. https://doi.org/10.1016/S1044-0305(02)00362-8.

    CAS  Article  PubMed  Google Scholar 

  39. Pridmore CJ, Mosely JA, Sanderson JM. The reproducibility of phospholipid analyses by MALDI-MSMS. Analyst. 2011;136(12):2598–605. https://doi.org/10.1039/c0an00436g.

    CAS  Article  PubMed  Google Scholar 

  40. Demeure K, Gabelica V, De Pauw EA. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J Am Soc Mass Spectrom. 2010;21(11):1906–17. https://doi.org/10.1016/j.jasms.2010.07.009.

    CAS  Article  PubMed  Google Scholar 

  41. Soltwisch J, Dreisewerd K. Discrimination of isobaric leucine and isoleucine residues and analysis of post-translational modifications in peptides by MALDI in-source decay mass spectrometry combined with collisional cooling. Anal Chem. 2010;82(13):5628–35. https://doi.org/10.1021/ac1006014.

    CAS  Article  PubMed  Google Scholar 

  42. Kocher T, Engstrom A, Zubarev RA. Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals. Anal Chem. 2005;77(1):172–7. https://doi.org/10.1021/ac0489115.

    CAS  Article  PubMed  Google Scholar 

  43. Gao J, Cassady CJ. Negative ion production from peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(24):4066–72. https://doi.org/10.1002/rcm.3818.

    CAS  Article  PubMed  Google Scholar 

  44. White T, Bursten S, Federighi D, Lewis RA, Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem. 1998;258(1):109–17. https://doi.org/10.1006/abio.1997.2545.

    CAS  Article  PubMed  Google Scholar 

  45. Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: a brief review and perspective. J Mass Spectrom. 2020;55(12):e4614. https://doi.org/10.1002/jms.4614.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Murphy RC, Okuno T, Johnson CA, Barkley RM. Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry. Anal Chem. 2017;89(16):8545–53. https://doi.org/10.1021/acs.analchem.7b02375.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study is sponsored by the Ministry of Science and Technology of Taiwan Grant No. MOST 108-2918-I-110-006 (H.Y.J.W.) and by the US Public Health Service Grants P41-GM103422 and P60-DK-20579. H.Y.J.W. would like to thank Prof. Amina S. Woods for her comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hay-Yan J. Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 965 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, HY.J., Hsu, FF. Structural characterization of phospholipids and sphingolipids by in-source fragmentation MALDI/TOF mass spectrometry. Anal Bioanal Chem 414, 2089–2102 (2022). https://doi.org/10.1007/s00216-021-03843-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03843-1

Keywords

  • Phospholipids
  • Sphingolipids
  • Fatty acyl double-bond
  • MALDI/TOF
  • In-source fragmentation