Skip to main content
Log in

Supramolecular systems chemistry through advanced analytical techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335(6070):813–7. https://doi.org/10.1126/science.1205962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Du X, Zhou J, Shi J, Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev. 2015;115(24):13165–307. https://doi.org/10.1021/acs.chemrev.5b00299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh N, Kumar M, Miravet JF, Ulijn RV, Escuder B. Peptide-based molecular hydrogels as supramolecular protein mimics. Chem Eur J. 2017;23(5):981–93. https://doi.org/10.1002/chem.201602624.

    Article  CAS  PubMed  Google Scholar 

  4. De Greef TF, Smulders MM, Wolffs M, Schenning AP, Sijbesma RP, Meijer EW. Supramolecular polymerization. Chem Rev. 2009;109(11):5687–754. https://doi.org/10.1021/cr900181u.

    Article  CAS  PubMed  Google Scholar 

  5. Mattia E, Otto S. Supramolecular systems chemistry. Nat Nanotechnol. 2015;10(2):111–9. https://doi.org/10.1038/nnano.2014.337.

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenasy G, Hermans TM, Otto S, Taylor AF. Systems chemistry. Chem Soc Rev. 2017;46(9):2543–54. https://doi.org/10.1039/c7cs00117g.

    Article  CAS  PubMed  Google Scholar 

  7. Das K, Gabrielli L, Prins LJ. Chemically fueled self-assembly in biology and chemistry. Angew Chem Int Ed Engl. 2021;60(37):20120–43. https://doi.org/10.1002/anie.202100274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-based supramolecular systems chemistry. Chem Rev. 2021. https://doi.org/10.1021/acs.chemrev.1c00089.

    Article  PubMed  Google Scholar 

  9. De S, Klajn R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv Mater. 2018;30(41):e1706750. https://doi.org/10.1002/adma.201706750.

    Article  CAS  PubMed  Google Scholar 

  10. Forsythe JG, Petrov AS, Millar WC, Yu S-S, Krishnamurthy R, Grover MA, Hud NV, Fernández FM. Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proc Natl Acad Sci USA. 2017;114(37):E7652. https://doi.org/10.1073/pnas.1711631114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Surman AJ, Rodriguez-Garcia M, Abul-Haija YM, Cooper GJT, Gromski PS, Turk-MacLeod R, Mullin M, Mathis C, Walker SI, Cronin L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc Natl Acad Sci USA. 2019;116(12):5387. https://doi.org/10.1073/pnas.1813987116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valdivielso AM, Puig-Castellví F, Atcher J, Solà J, Tauler R, Alfonso I. Unraveling the multistimuli responses of a complex dynamic system of pseudopeptidic macrocycles. Chem Eur J. 2017;23(45):10789–99. https://doi.org/10.1002/chem.201701294.

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Lopez C, Ginebreda A, Carrascal M, Barcelò D, Abian J, Tauler R. Non-target protein analysis of samples from wastewater treatment plants using the regions of interest-multivariate curve resolution (ROIMCR) chemometrics method. J Environ Chem Eng. 2021;9(4):105752. https://doi.org/10.1016/j.jece.2021.105752.

    Article  CAS  Google Scholar 

  14. Leitão JM, Tauler R, da Silva JC. Chemometric analysis of excitation emission matrices of fluorescent nanocomposites. J Fluoresc. 2011;21(5):1987–96. https://doi.org/10.1007/s10895-011-0899-y.

    Article  CAS  PubMed  Google Scholar 

  15. Tauler R, Parastar H. Big (bio)chemical data mining using chemometric methods: a need for chemists. Angew Chem Int Ed Engl. 2018. https://doi.org/10.1002/anie.201801134.

    Article  PubMed  Google Scholar 

  16. Payne EM, Holland-Moritz DA, Sun S, Kennedy RT. High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab Chip. 2020;20(13):2247–62. https://doi.org/10.1039/D0LC00347F.

    Article  CAS  PubMed  Google Scholar 

  17. Zhuo Y, Wang X, Chen S, Chen H, Ouyang J, Yang L, Wang X, You L, Utz M, Tian Z, Cao X. Quantification and prediction of imine formation kinetics in aqueous solution by microfluidic NMR spectroscopy. Chem Eur J. 2021;27(37):9508–13. https://doi.org/10.1002/chem.202100874.

    Article  CAS  PubMed  Google Scholar 

  18. Bortolini C, Kartanas T, Copic D, Condado Morales I, Zhang Y, Challa PK, Peter Q, Jávorfi T, Hussain R, Dong M, Siligardi G, Knowles TPJ, Charmet J. Resolving protein mixtures using microfluidic diffusional sizing combined with synchrotron radiation circular dichroism. Lab Chip. 2019;19(1):50–8. https://doi.org/10.1039/C8LC00757H.

    Article  CAS  Google Scholar 

  19. Carbajo D, Pérez Y, Bujons J, Alfonso I. Live-cell-templated dynamic combinatorial chemistry. Angew Chem Int Ed. 2020;59(39):17202–6. https://doi.org/10.1002/anie.202004745.

    Article  CAS  Google Scholar 

  20. Boekhoven J, Brizard AM, Kowlgi KNK, Koper GJM, Eelkema R, van Esch JH. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew Chem Int Ed. 2010;49(28):4825–8. https://doi.org/10.1002/anie.201001511.

    Article  CAS  Google Scholar 

  21. Boekhoven J, Hendriksen WE, Koper GJM, Eelkema R, van Esch JH. Transient assembly of active materials fueled by a chemical reaction. Science. 2015;349(6252):1075–9. https://doi.org/10.1126/science.aac6103.

    Article  CAS  PubMed  Google Scholar 

  22. Sorrenti A, Leira-Iglesias J, Sato A, Hermans TM. Non-equilibrium steady states in supramolecular polymerization. Nat Commun. 2017;8:15899. https://doi.org/10.1038/ncomms15899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Albertazzi L, van der Zwaag D, Leenders CMA, Fitzner R, van der Hofstad RW, Meijer EW. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science. 2014;344(6183):491. https://doi.org/10.1126/science.1250945.

    Article  CAS  PubMed  Google Scholar 

  24. Sarkar A, Sasmal R, Empereur-mot C, Bochicchio D, Kompella SVK, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. Self-sorted, random, and block supramolecular copolymers via sequence controlled, multicomponent self-assembly. J Am Chem Soc. 2020;142(16):7606–17. https://doi.org/10.1021/jacs.0c01822.

    Article  CAS  PubMed  Google Scholar 

  25. Sarkar A, Behera T, Sasmal R, Capelli R, Empereur-mot C, Mahato J, Agasti SS, Pavan GM, Chowdhury A, George SJ. Cooperative supramolecular block copolymerization for the synthesis of functional axial organic heterostructures. J Am Chem Soc. 2020;142(26):11528–39. https://doi.org/10.1021/jacs.0c04404.

    Article  CAS  PubMed  Google Scholar 

  26. Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, Hamachi I. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat Chem. 2016;8(8):743–52. https://doi.org/10.1038/nchem.2526.

    Article  CAS  PubMed  Google Scholar 

  27. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science. 2008;320(5873):246–9. https://doi.org/10.1126/science.1154228.

    Article  CAS  PubMed  Google Scholar 

  28. Shao L, Kner P, Rego EH, Gustafsson MGL. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods. 2011;8(12):1044–6. https://doi.org/10.1038/nmeth.1734.

    Article  CAS  PubMed  Google Scholar 

  29. Godin Antoine G, Lounis B, Cognet L. Super-resolution microscopy approaches for live cell imaging. Biophys J. 2014;107(8):1777–84. https://doi.org/10.1016/j.bpj.2014.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Taki M, Sato Y, Tamura Y, Yaginuma H, Okada Y, Yamaguchi S. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc Natl Acad Sci USA. 2019;116(32):15817–22. https://doi.org/10.1073/pnas.1905924116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jing Y, Zhang C, Yu B, Lin D, Qu J. Super-resolution microscopy: shedding new light on in vivo imaging. Front Chem. 2021;9:746900. https://doi.org/10.3389/fchem.2021.746900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar M, Son J, Huang RH, Sementa D, Lee M, O’Brien S, Ulijn RV. In situ, noncovalent labeling and stimulated emission depletion-based super-resolution imaging of supramolecular peptide nanostructures. ACS Nano. 2020;14(11):15056–63. https://doi.org/10.1021/acsnano.0c05029.

    Article  CAS  PubMed  Google Scholar 

  33. Parent LR, Bakalis E, Ramírez-Hernández A, Kammeyer JK, Park C, de Pablo J, Zerbetto F, Patterson JP, Gianneschi NC. Directly observing micelle fusion and growth in solution by liquid-cell transmission electron microscopy. J Am Chem Soc. 2017;139(47):17140–51. https://doi.org/10.1021/jacs.7b09060.

    Article  CAS  PubMed  Google Scholar 

  34. Touve MA, Carlini AS, Gianneschi NC. Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry. Nat Commun. 2019;10(1):4837. https://doi.org/10.1038/s41467-019-12660-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao H-G, Zheng H. Liquid cell transmission electron microscopy. Annu Rev Phys Chem. 2016;67(1):719–47. https://doi.org/10.1146/annurev-physchem-040215-112501.

    Article  CAS  PubMed  Google Scholar 

  36. Marchello G, De Pace C, Duro-Castano A, Battaglia G, Ruiz PL. End-to-end image analysis pipeline for liquid-phase electron microscopy. J Microsc. 2020;279(3):242–8. https://doi.org/10.1111/jmi.12889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW, Han SH, Weitz DA. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015;15(7):4737–44. https://doi.org/10.1021/acs.nanolett.5b01636.

    Article  CAS  PubMed  Google Scholar 

  38. Dahmke IN, Verch A, Hermannsdörfer J, Peckys DB, Weatherup RS, Hofmann S, de Jonge N. Graphene liquid enclosure for single-molecule analysis of membrane proteins in whole cells using electron microscopy. ACS Nano. 2017;11(11):11108–17. https://doi.org/10.1021/acsnano.7b05258.

    Article  CAS  PubMed  Google Scholar 

  39. Fukui T, Uchihashi T, Sasaki N, Watanabe H, Takeuchi M, Sugiyasu K. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew Chem Int Ed Engl. 2018;57(47):15465–70. https://doi.org/10.1002/anie.201809165.

    Article  CAS  PubMed  Google Scholar 

  40. Jin H, Jiao F, Daily MD, Chen Y, Yan F, Ding YH, Zhang X, Robertson EJ, Baer MD, Chen CL. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nat Commun. 2016;7:12252. https://doi.org/10.1038/ncomms12252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aratsu K, Takeya R, Pauw BR, Hollamby MJ, Kitamoto Y, Shimizu N, Takagi H, Haruki R, Adachi SI, Yagai S. Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes. Nat Commun. 2020;11(1):1623. https://doi.org/10.1038/s41467-020-15422-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev. 2014;114(6):3120–88. https://doi.org/10.1021/cr4003837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA. 2001;98(22):12468–72. https://doi.org/10.1073/pnas.211400898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fantner GE, Schitter G, Kindt JH, Ivanov T, Ivanova K, Patel R, Holten-Andersen N, Adams J, Thurner PJ, Rangelow IW, Hansma PK. Components for high speed atomic force microscopy. Ultramicroscopy. 2006;106(8):881–7. https://doi.org/10.1016/j.ultramic.2006.01.015.

    Article  CAS  PubMed  Google Scholar 

  45. Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, De Greef TFA, Meijer EW. Pathway complexity in supramolecular polymerization. Nature. 2012;481(7382):492–6. https://doi.org/10.1038/nature10720.

    Article  CAS  PubMed  Google Scholar 

  46. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Living supramolecular polymerization realized through a biomimetic approach. Nat Chem. 2014;6(3):188–95. https://doi.org/10.1038/nchem.1849.

    Article  CAS  PubMed  Google Scholar 

  47. Maity S, Ottele J, Santiago GM, Frederix P, Kroon P, Markovitch O, Stuart MCA, Marrink SJ, Otto S, Roos WH. Caught in the act: mechanistic insight into supramolecular polymerization-driven self-replication from real-time visualization. J Am Chem Soc. 2020;142(32):13709–17. https://doi.org/10.1021/jacs.0c02635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kodera N, Yamamoto D, Ishikawa R, Ando T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature. 2010;468(7320):72–6. https://doi.org/10.1038/nature09450.

    Article  CAS  PubMed  Google Scholar 

  49. Uchihashi T, Iino R, Ando T, Noji H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science. 2011;333(6043):755–8. https://doi.org/10.1126/science.1205510.

    Article  CAS  PubMed  Google Scholar 

  50. Scheuring S, Sturgis JN. Dynamics and diffusion in photosynthetic membranes from Rhodospirillum photometricum. Biophys J. 2006;91(10):3707–17. https://doi.org/10.1529/biophysj.106.083709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc. 2014;9(5):1113–30. https://doi.org/10.1038/nprot.2014.070.

    Article  CAS  PubMed  Google Scholar 

  52. Calò A, Reguera D, Oncins G, Persuy M-A, Sanz G, Lobasso S, Corcelli A, Pajot-Augy E, Gomila G. Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young’s modulus. Nanoscale. 2014;6(4):2275–85. https://doi.org/10.1039/C3NR05107B.

    Article  PubMed  Google Scholar 

  53. Calò A, Eleta-Lopez A, Stoliar P, De Sancho D, Santos S, Verdaguer A, Bittner AM. Multifrequency force microscopy of helical protein assembly on a virus. Sci Rep. 2016;6(1):21899. https://doi.org/10.1038/srep21899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millan-Solsona R, Checa M, Fumagalli L, Gomila G. Mapping the capacitance of self-assembled monolayers at metal/electrolyte interfaces at the nanoscale by in-liquid scanning dielectric microscopy. Nanoscale. 2020;12(40):20658–68. https://doi.org/10.1039/D0NR05723A.

    Article  CAS  PubMed  Google Scholar 

  55. Dols-Perez A, Gramse G, Calò A, Gomila G, Fumagalli L. Nanoscale electric polarizability of ultrathin biolayers on insulating substrates by electrostatic force microscopy. Nanoscale. 2015;7(43):18327–36. https://doi.org/10.1039/C5NR04983K.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar M, Ing NL, Narang V, Wijerathne NK, Hochbaum AI, Ulijn RV. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat Chem. 2018;10(7):696–703. https://doi.org/10.1038/s41557-018-0047-2.

    Article  CAS  PubMed  Google Scholar 

  57. Dal Molin M, Verolet Q, Colom A, Letrun R, Derivery E, Gonzalez-Gaitan M, Vauthey E, Roux A, Sakai N, Matile S. Fluorescent flippers for mechanosensitive membrane probes. J Am Chem Soc. 2015;137(2):568–71. https://doi.org/10.1021/ja5107018.

    Article  CAS  Google Scholar 

  58. Goujon A, Colom A, Strakova K, Mercier V, Mahecic D, Manley S, Sakai N, Roux A, Matile S. Mechanosensitive fluorescent probes to image membrane tension in mitochondria, endoplasmic reticulum, and lysosomes. J Am Chem Soc. 2019;141(8):3380–4. https://doi.org/10.1021/jacs.8b13189.

    Article  CAS  PubMed  Google Scholar 

  59. Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at work: access to mechanosensitive fluorescent probes, chalcogen-bonding catalysis, and beyond. Chem Rev. 2019;119(19):10977–1005. https://doi.org/10.1021/acs.chemrev.9b00279.

    Article  CAS  PubMed  Google Scholar 

  60. Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D. Non-equilibrium polymerization of cross-β amyloid peptides for temporal control of electronic properties. Angew Chem Int Ed. 2020;59(32):13506–10. https://doi.org/10.1002/anie.202003721.

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded by a fellowship from “la Caixa” Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847648. The fellowship code is “LCF/BQ/PI21/11830035.” AC received the Ajut a la Recerca Transversal project from IN2UB (ART2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Calò, A., Barceló, D. et al. Supramolecular systems chemistry through advanced analytical techniques. Anal Bioanal Chem 414, 5105–5119 (2022). https://doi.org/10.1007/s00216-021-03824-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03824-4

Keywords

Navigation