Skip to main content
Log in

Melanochrome-based colorimetric assay for quantitative detection of levodopa in co-presence of carbidopa and its application to relevant anti-Parkinson drugs

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper is reported the selective detection and quantification of levodopa in co-presence of carbidopa. The method took advantage of the spontaneous oxidation and color development of levodopa at basic pH here driven by alkaline earth cations and co-solvent in solution. We have shown for the first time the generation and stabilization of the purple melanochrome from levodopa, by using magnesium acetate and dimethyl sulfoxide, which was here exploited for the development of a quantitative colorimetric assay for the active principle ingredient in commercial drugs for the treatment of Parkinson’s disease. The calibration curves of levodopa in the two tablet formulations, containing carbidopa as decarboxylase inhibitor, showed a common linear trend between 10 mg L−1 and 40 mg L−1 with levodopa alone or in combination with carbidopa in standard solutions, with very good reproducibility (CVav%, 3.3% for both brand and generic drug) and very good sensitivity, with limit of quantification about 0.6 mg L−1 in any case. The colorimetric method here developed is very simple and effective, appearing as a rapid and low-cost alternative to other methodologies, involving large and expensive instrumentations, for drug estimation and quality control of pharmaceutical formulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bisaglia M, Filograna R, Beltramini M, Bubacco L. Are dopamine derivatives implicated in the pathogenesis of Parkinson’s disease? Ageing Res Rev. 2014. https://doi.org/10.1016/j.arr.2013.12.009.

  2. Jeitner TM, Kalogiannis M, Krasnikov BF, Gomlin I, Peltier MR, Moran GR. Linking inflammation and Parkinson disease: hypochlorous acid generates parkinsonian poisons. Toxicol Sci. 2016. https://doi.org/10.1093/toxsci/kfw052.

  3. Palladino P, Torrini F, Scarano S, Minunni M. Colorimetric analysis of the early oxidation of dopamine by hypochlorous acid as preliminary screening tool for chemical determinants of neuronal oxidative stress. J Pharm Biomed Anal. 2020. https://doi.org/10.1016/j.jpba.2019.113016.

  4. Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res. 2009. https://doi.org/10.1007/s11064-009-9986-8.

  5. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014:1670–83. https://doi.org/10.1001/jama.2014.3654.

  6. Oertel WH. Recent advances in treating Parkinson’s disease. F1000Research. 2017. https://doi.org/10.12688/f1000research.10100.1.

  7. Wollmer E, Klein S. Development and validation of a robust and efficient HPLC method for the simultaneous quantification of levodopa, carbidopa, benserazide and entacapone in complex matrices. J Pharm Pharm Sci. 2017. https://doi.org/10.18433/J3K923.

  8. Fanali S, Pucci V, Sabbioni C, Raggi MA. Quality control of benserazide levodopa and carbidopa-levodopa tablets by capillary zone electrophoresis. Electrophoresis. 2000. https://doi.org/10.1002/1522-2683(20000701)21:12<2432::AID-ELPS2432>3.0.CO;2-E.

  9. Wang J, Zhou Y, Liang J, He PG, Fang YZ. Determination of levodopa and benserazide hydrochloride in pharmaceutical formulations by CZE with amperometric detection. Chromatographia. 2005. https://doi.org/10.1365/s10337-005-0515-x2005.

  10. Quintino M, Yamashita M, Angnes L. Voltammetric studies and determination of levodopa and carbidopa in pharmaceutical products. Electroanalysis. 2006. https://doi.org/10.1002/elan.200503445.

  11. Saini AS, Kumar J, Melo JS. Microplate based optical biosensor for L-dopa using tyrosinase from Amorphophallus campanulatus. Anal Chim Acta. 2014. https://doi.org/10.1016/j.aca.2014.08.016.

  12. Hassib ST, El-Khateeb SZ. Spectrometric determination of madopar capsules. Anal Lett. 1990. https://doi.org/10.1080/00032719008052442.

  13. Coello J, Maspoch S, Villegas N. Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi-and three-way partial least squares calibration. Talanta. 2000. https://doi.org/10.1016/S0039-9140(00)00539-7.

  14. Nagaraja P, Vasantha RA, Sunitha KR. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta. 2001. https://doi.org/10.1016/S0039-9140(01)00438-6.

  15. Uslu B, Özkan SA. Determination of binary mixtures of levodopa and benserazide in pharmaceuticals by ratio-spectra derivative spectrophotometry. Anal Lett. 2002. https://doi.org/10.1081/AL-120002531.

  16. Damiani PC, Moschetti AC, Rovetto AJ, Benavente F, Olivieri AC. Design and optimization of a chemometrics assisted spectrophotometric methods for the simultaneous determination of levodopa and carbidopa in pharmaceutical products. Anal Chim Acta. 2005. https://doi.org/10.1016/j.aca.2005.04.065.

  17. Chamsaz M, Safavi A, Fadaee J. Simultaneous kinetic spectrophotometric determination of carbidopa, levodopa and methyldopa in the presence of citrate with the aid of multivariate calibration and artificial neural networks. Anal Chim Acta. . https://doi.org/10.1016/j.aca.2007.09.006.

  18. Chou YC, Shih CI, Chiang CC, Hsu CH, Yeh YC. Reagent-free dopa-dioxygenase colorimetric biosensor for selective detection of L-dopa. Sens Actuat B: Chemical. 2019. https://doi.org/10.1016/j.snb.2019.126717.

  19. Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem. 2005. https://doi.org/10.1021/ac048691v.

  20. Mohamed G, Nour-El-Dien F, El-Nahas R. Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoules. Afinidad. 2009; https://raco.cat/index.php/afinidad/article/view/277273.

  21. Khanmohammadi M, Mobedi E, Garmarudi AB, Mobedi H, Kargosha K. Simultaneous determination of levodopa and carbidopa in levodopa-carbidopa tablets by ATR-FTIR spectrometry. Pharm Dev Technol. 2007. https://doi.org/10.1080/10837450701481249.

  22. Talebpour Z, Haghgoo S, Shamsipur M. 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations. Anal Chim Acta. 2004. https://doi.org/10.1016/j.aca.2003.10.081.

  23. Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors-illuminating the path to personalized drug dosing. Biosens Bioelectron. 2021. https://doi.org/10.1016/j.bios.2021.113331.

  24. Vachtenheim J, Duchoň J, Matouš B. A spectrophotometric assay for mammalian tyrosinase utilizing the formation of melanochrome from L-dopa. Anal Biochem. 1985. https://doi.org/10.1016/0003-2697(85)90559-7.

  25. Palladino P, Minunni M, Scarano S. Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing. Biosens Bioelectron. 2018. https://doi.org/10.1016/j.bios.2018.01.068.

  26. Scarano S, Pascale E, Palladino P, Fratini E, Minunni M. Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: a layer-by-layer approach for Localized Surface Plasmon Resonance measurements at fixed wavelength. Talanta. 2018. https://doi.org/10.1016/j.talanta.2018.02.044.

  27. Scarano S, Palladino P, Pascale E, Brittoli A, Minunni M. Colorimetric determination of p-nitrophenol by using ELISA microwells modified with an adhesive polydopamine nanofilm containing catalytically active gold nanoparticles. Microchim Acta. 2019. https://doi.org/10.1007/s00604-019-3259-2.

  28. Palladino P, Bettazzi F, Scarano S. Polydopamine: surface coating, molecular imprinting, and electrochemistry d successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-01665-w.

  29. Baldoneschi V, Palladino P, Scarano S, Minunni M. Polynorepinephrine: state-of-the-art and perspective applications in biosensing and molecular recognition. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02578-9.

  30. Baldoneschi V, Palladino P, Banchini M, Minunni M, Scarano S. Norepinephrine as new functional monomer for molecular imprinting: an applicative study for the optical sensing of cardiac biomarkers. Biosens Bioelectron. 2020. https://doi.org/10.1016/j.bios.2020.112161.

  31. Torrini F, Palladino P, Baldoneschi V, Scarano S, Minunni M. Sensitive ‘two-steps’ competitive assay for gonadotropin-releasing hormone detection via SPR biosensing and polynorepinephrine-based molecularly imprinted polymer. Anal Chim Acta. 2021. https://doi.org/10.1016/j.aca.2021.338481.

  32. Palladino P, Brittoli A, Pascale E, Minunni M, Scarano S. Colorimetric determination of total protein content in serum based on the polydopamine/protein adsorption competition on microplates. Talanta. 2019. https://doi.org/10.1016/j.talanta.2019.01.095.

  33. Torrini F, Scarano S, Palladino P, Minunni M. Polydopamine-based quantification of albuminuria for the assessment of kidney damage. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-021-03192-z.

  34. Tan X, Gao P, Li Y, Qi P, Liu J, Shen R, Wang L, Huang N, Xiong K, Tian W, Tu Q. Poly-dopamine, poly-levodopa, and poly-norepinephrine coatings: comparison of physico-chemical and biological properties with focus on the application for blood-contacting devices. Bioact Mater. 2021. https://doi.org/10.1016/j.bioactmat.2020.06.024.

  35. Fatibello-Filho O, da Cruz VI. Flow injection spectrophotometric determination of L-Dopa and carbidopa in pharmaceutical formulations using a crude extract of sweet potato root [Ipomoea batatas (L.) Lam.] as enzymatic source. Analyst. 1997; https://doi.org/10.1039/A606852I.

  36. Mason HS, Peterson EW, Melanoproteins I. Reactions between enzyme-generated quinones and amino acids. Biochim Biophys Acta. 1965:10.1016/0304-4165(65)90479-4.

  37. Napolitano A, Corradini MG, Prota G. A reinvestigation of the structure of melanochrome. Tetrahedron Lett. 1985. https://doi.org/10.1016/S0040-4039(00)94917-7.

  38. Pezzella A, Panzella L, Crescenzi O, Napolitano A, Navaratman S, Edge R, Land EJ, Barone V, d'Ischia M. Short-lived quinonoid species from 5,6-dihydroxyindole dimers en route to eumelanin polymers: integrated chemical, pulse radiolytic, and quantum mechanical investigation. J Am Chem Soc. 2006. https://doi.org/10.1021/ja0650246.

  39. Micillo R, Panzella L, Iacomino M, Prampolini G, Cacelli I, Ferretti A, Crescenzi O, Koike K, Napolitano A, d’Ischia M. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Sci Rep. 2017. https://doi.org/10.1038/srep41532.

  40. Fu Y, Liu L, Wang YM, Li JN, Yu TQ, Guo QX. Quantum-chemical predictions of redox potentials of organic anions in dimethyl sulfoxide and reevaluation of bond dissociation enthalpies measured by the electrochemical methods. J Phys Chem A. 2006. https://doi.org/10.1021/jp055682x.

  41. Zhu XQ, Wang CH, Liang H. Scales of oxidation potentials, pKa, and BDE of various hydroquinones and catechols in DMSO. J Organic Chem. 2010. https://doi.org/10.1021/jo101455m.

  42. Rossini E, Bochevarov AD, Knapp EW. Empirical Conversion of pKa Values between different solvents and interpretation of the parameters: application to water, acetonitrile, dimethyl sulfoxide, and methanol. ACS Omega. 2018. https://doi.org/10.1021/acsomega.7b01895.

  43. Go CL, Rosales RL, Schmidt P, Lyons KE, Pahwa R, Okun MS. Generic versus branded pharmacotherapy in Parkinson’s disease: does it matter? A review. Parkinsonism Relat Disord. 2011. https://doi.org/10.1016/j.parkreldis.2011.02.005.

  44. The National Parkinson Foundation’s Helpline Speaks: Lessons from the 2011 Sinemet Shortage 2012. http://comitatoparkinson.it/wp-content/uploads/2019/05/anpfreport_sinimetshortage201.pdf. Accessed 08 Sept 2021.

Download references

Funding

The authors received support from the Ministry of Education, University and Research (MIUR), through the project “Dipartimenti di Eccellenza 2018-2022,” and Horizon 2020, ERA-NET – Photonic Sensing Transnational Call 2016, through the project PLABAN “advanced PLAsmonic Biosensors ANalysis of nucleic acids.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Palladino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lettieri, M., Emanuele, R., Scarano, S. et al. Melanochrome-based colorimetric assay for quantitative detection of levodopa in co-presence of carbidopa and its application to relevant anti-Parkinson drugs. Anal Bioanal Chem 414, 1713–1722 (2022). https://doi.org/10.1007/s00216-021-03804-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03804-8

Keywords

Navigation