Skip to main content

Advertisement

Log in

Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm−1, 1560 cm−1, and 1648 cm−1. In their place, a feature at 1537 cm−1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm−1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berleman JE, Scott J, Chumley T, Kirby JR. Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci USA. 2008;105(44):17127–32.

    Article  CAS  Google Scholar 

  2. Brown PJ, Kysela DT, Brun YV, editors. Polarity and the diversity of growth mechanisms in bacteria. Semin Cell Dev Biol; 2011: Elsevier.

  3. Dworkin M, Kaiser D. Cell interactions in myxobacterial growth and development. Science. 1985;230(4721):18–24.

    Article  CAS  Google Scholar 

  4. Campos JM, Zusman DR. Regulation of development in Myxococcus xanthus: effect of 3′: 5′-cyclic AMP, ADP, and nutrition. Proc Natl Acad Sci USA. 1975;72(2):518–22.

    Article  CAS  Google Scholar 

  5. Kaiser D. Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol. 2003;1(1):45–54.

    Article  CAS  Google Scholar 

  6. Kaiser D, Welch R. Dynamics of fruiting body morphogenesis. J Bacteriol. 2004;186(4):919–27.

    Article  CAS  Google Scholar 

  7. Giglio KM, Caberoy N, Suen G, Kaiser D, Garza AG. A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA. 2011;108(32):E431–9.

    Article  CAS  Google Scholar 

  8. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Müller R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol. 2008;74(10):3058–68.

    Article  CAS  Google Scholar 

  9. Martinez-Laborda A, Balsalobre JM, Fontes M, Murillo FJ. Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol Gen Genet MGG. 1990;223(2):205–10.

    Article  CAS  Google Scholar 

  10. Iniesta AA, Cervantes M, Murillo FJ. Cooperation of two carotene desaturases in the production of lycopene in Myxococcus xanthus. FEBS J. 2007;274(16):4306–14.

    Article  CAS  Google Scholar 

  11. Bode HB, Müller R. Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol. 2006;33(7):577–88.

    Article  CAS  Google Scholar 

  12. Gerth K, Jansen R, Reifenstahl G, Höfle G, Irschik H, Kunze B, et al. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). J Antibiot. 1983;36(9):1150–6.

    Article  CAS  Google Scholar 

  13. Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, et al. DKxanthene biosynthesis—understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem Biol. 2008;15(8):771–81.

    Article  CAS  Google Scholar 

  14. Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother. 2012;56(4):2014–21.

    Article  CAS  Google Scholar 

  15. Burchard RP, Dworkin M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J Bacteriol. 1966;91(2):535–45.

    Article  CAS  Google Scholar 

  16. Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol. 2011;81(3):784–804.

    Article  CAS  Google Scholar 

  17. Meiser P, Bode HB, Müller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA. 2006;103(50):19128–33.

    Article  CAS  Google Scholar 

  18. Ember KJ, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regenerative medicine. 2017;2(1):1–10.

    Article  Google Scholar 

  19. Baig N, Polisetti S, Morales-Soto N, Dunham SJ, Sweedler JV, Shrout JD, et al., editors. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. Biosensing and Nanomedicine IX; 2016: International Society for Optics and Photonics.

  20. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–87.

    Article  CAS  Google Scholar 

  21. Polisetti S, Baig NF, Morales-Soto N, Shrout JD, Bohn PW. Spatial mapping of pyocyanin in Pseudomonas aeruginosa bacterial communities using surface enhanced Raman scattering. Appl Spectrosc. 2017;71(2):215–23.

    Article  CAS  Google Scholar 

  22. Petry R, Schmitt M, Popp J. Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem. 2003;4(1):14–30.

    Article  CAS  Google Scholar 

  23. Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol. 2007;103(5):1808–20.

    Article  CAS  Google Scholar 

  24. Polisetti S, Bible AN, Morrell-Falvey JL, Bohn PW. Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst. 2016;141(7):2175–82.

  25. Do H, Kwon S-R, Fu K, Morales-Soto N, Shrout JD, Bohn PW. Electrochemical surface-enhanced Raman spectroscopy of pyocyanin secreted by Pseudomonas aeruginosa Communities. Langmuir. 2019;35(21):7043–9.

    Article  CAS  Google Scholar 

  26. Cao T, Morales-Soto N, Jia J, Baig NF, Dunham SJ, Ellis J, et al., editors. Spatiotemporal dynamics of molecular messaging in bacterial co-cultures studied by multimodal chemical imaging. Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases II; 2019: International Society for Optics and Photonics.

  27. Harvey CW, Madukoma CS, Mahserejian S, Alber MS, Shrout JD. Cell division resets polarity and motility for the bacterium Myxococcus xanthus. J Bacteriol. 2014;196(22):3853–61.

    Article  Google Scholar 

  28. Hodgkin J, Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA. 1977;74(7):2938–42.

    Article  CAS  Google Scholar 

  29. Ahlf DR, Masyuko RN, Hummon AB, Bohn PW. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst. 2014;139(18):4578–85.

    Article  CAS  Google Scholar 

  30. Schulz H, Baranska M, Baranski R. Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis. Biopolymers: Original Research on Biomolecules. 2005;77(4):212–21.

  31. Baranska M, Schütze W, Schulz H. Determination of lycopene and β-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem. 2006;78(24):8456–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy Office of Science through grant DE-SC0019312. The authors are grateful to the Notre Dame Integrated Imaging Facility for assistance with various electron imaging measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Bohn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10078 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, H., Madukoma, C.S., Sundaresan, V. et al. Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions. Anal Bioanal Chem 414, 1691–1698 (2022). https://doi.org/10.1007/s00216-021-03795-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03795-6

Keywords

Navigation