Berleman JE, Scott J, Chumley T, Kirby JR. Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci USA. 2008;105(44):17127–32.
CAS
Article
Google Scholar
Brown PJ, Kysela DT, Brun YV, editors. Polarity and the diversity of growth mechanisms in bacteria. Semin Cell Dev Biol; 2011: Elsevier.
Dworkin M, Kaiser D. Cell interactions in myxobacterial growth and development. Science. 1985;230(4721):18–24.
CAS
Article
Google Scholar
Campos JM, Zusman DR. Regulation of development in Myxococcus xanthus: effect of 3′: 5′-cyclic AMP, ADP, and nutrition. Proc Natl Acad Sci USA. 1975;72(2):518–22.
CAS
Article
Google Scholar
Kaiser D. Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol. 2003;1(1):45–54.
CAS
Article
Google Scholar
Kaiser D, Welch R. Dynamics of fruiting body morphogenesis. J Bacteriol. 2004;186(4):919–27.
CAS
Article
Google Scholar
Giglio KM, Caberoy N, Suen G, Kaiser D, Garza AG. A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA. 2011;108(32):E431–9.
CAS
Article
Google Scholar
Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Müller R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol. 2008;74(10):3058–68.
CAS
Article
Google Scholar
Martinez-Laborda A, Balsalobre JM, Fontes M, Murillo FJ. Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol Gen Genet MGG. 1990;223(2):205–10.
CAS
Article
Google Scholar
Iniesta AA, Cervantes M, Murillo FJ. Cooperation of two carotene desaturases in the production of lycopene in Myxococcus xanthus. FEBS J. 2007;274(16):4306–14.
CAS
Article
Google Scholar
Bode HB, Müller R. Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol. 2006;33(7):577–88.
CAS
Article
Google Scholar
Gerth K, Jansen R, Reifenstahl G, Höfle G, Irschik H, Kunze B, et al. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). J Antibiot. 1983;36(9):1150–6.
CAS
Article
Google Scholar
Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, et al. DKxanthene biosynthesis—understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem Biol. 2008;15(8):771–81.
CAS
Article
Google Scholar
Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother. 2012;56(4):2014–21.
CAS
Article
Google Scholar
Burchard RP, Dworkin M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J Bacteriol. 1966;91(2):535–45.
CAS
Article
Google Scholar
Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol. 2011;81(3):784–804.
CAS
Article
Google Scholar
Meiser P, Bode HB, Müller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA. 2006;103(50):19128–33.
CAS
Article
Google Scholar
Ember KJ, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regenerative medicine. 2017;2(1):1–10.
Article
Google Scholar
Baig N, Polisetti S, Morales-Soto N, Dunham SJ, Sweedler JV, Shrout JD, et al., editors. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. Biosensing and Nanomedicine IX; 2016: International Society for Optics and Photonics.
Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–87.
CAS
Article
Google Scholar
Polisetti S, Baig NF, Morales-Soto N, Shrout JD, Bohn PW. Spatial mapping of pyocyanin in Pseudomonas aeruginosa bacterial communities using surface enhanced Raman scattering. Appl Spectrosc. 2017;71(2):215–23.
CAS
Article
Google Scholar
Petry R, Schmitt M, Popp J. Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem. 2003;4(1):14–30.
CAS
Article
Google Scholar
Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol. 2007;103(5):1808–20.
CAS
Article
Google Scholar
Polisetti S, Bible AN, Morrell-Falvey JL, Bohn PW. Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst. 2016;141(7):2175–82.
Do H, Kwon S-R, Fu K, Morales-Soto N, Shrout JD, Bohn PW. Electrochemical surface-enhanced Raman spectroscopy of pyocyanin secreted by Pseudomonas aeruginosa Communities. Langmuir. 2019;35(21):7043–9.
CAS
Article
Google Scholar
Cao T, Morales-Soto N, Jia J, Baig NF, Dunham SJ, Ellis J, et al., editors. Spatiotemporal dynamics of molecular messaging in bacterial co-cultures studied by multimodal chemical imaging. Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases II; 2019: International Society for Optics and Photonics.
Harvey CW, Madukoma CS, Mahserejian S, Alber MS, Shrout JD. Cell division resets polarity and motility for the bacterium Myxococcus xanthus. J Bacteriol. 2014;196(22):3853–61.
Article
Google Scholar
Hodgkin J, Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA. 1977;74(7):2938–42.
CAS
Article
Google Scholar
Ahlf DR, Masyuko RN, Hummon AB, Bohn PW. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst. 2014;139(18):4578–85.
CAS
Article
Google Scholar
Schulz H, Baranska M, Baranski R. Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis. Biopolymers: Original Research on Biomolecules. 2005;77(4):212–21.
Baranska M, Schütze W, Schulz H. Determination of lycopene and β-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem. 2006;78(24):8456–61.
CAS
Article
Google Scholar