Skip to main content

Advertisement

Log in

A photonic crystal fiber–based fluorescence sensor for simultaneous and sensitive detection of lactic acid enantiomers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A photonic crystal fiber (PCF)–based fluorescence sensor is developed for rapid and sensitive detection of lactic acid (LA) enantiomers in serum samples. The sensor is fabricated by chemical binding dual enzymes on the inner surface of the PCF with numerous pore structures and a large specific surface area, which is suitable to be utilized as an enzymatic reaction carrier. To achieve simultaneous detection of l-LA and d-LA, the PCF with an aldehyde-activated surface is cut into two separate pieces, one of which is coated with l-LDH/GPT enzymes and the other with d-LDH/GPT enzymes. By being connected and carefully aligned to each other by a suitable sleeve tube connector, the responses of both l-LA and d-LA sensors are determined by laser-induced flourescence (LIF) detection. With the aid of enzyme-linked catalytic reactions, the proposed PCF sensor can greatly improve the sensitivity and analysis speed for the detection of LA enantiomers. The PCF sensor exhibits a low limit of detection of 9.5 μM and 0.8 μM, and a wide linear range of 25–2000 μM and 2–400 μM for l-LA and d-LA, respectively. The sensor has been successfully applied to accurate determination of LA enantiomers in human serum with satisfactory reproducibility and stability. It is indicated that the present PCF sensors would be used as an attractive analytical platform for quantitative detection of trace-amount LA enantiomers in real biological samples, and thus would play a role in disease diagnosis and clinical monitoring in point-of-care testing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Choi YM, Lim H, Lee HN, Park YM, Park JS, Kim HJ. Selective nonenzymatic amperometric detection of lactic acid in human sweat utilizing a multi-walled carbon nanotube (MWCNT)-polypyrrole core-shell nanowire. Biosensors-Basel. 2020;10(9):111. https://doi.org/10.3390/bios10090111.

    Article  CAS  PubMed Central  Google Scholar 

  2. Ma LN, Huang XB, Muyayalo KP, Mor G, Liao AH. Lactic acid: a novel signaling molecule in early pregnancy? Front Immunol. 2020;11:279. https://doi.org/10.3389/fimmu.2020.00279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang HC, Lee IJ, Huang C, Chang TM. Lactic acid bacteria and lactic acid for skin health and melanogenesis inhibition. Curr Pharm Biotechnol. 2020;21(7):566–77. https://doi.org/10.2174/1389201021666200109104701.

    Article  CAS  PubMed  Google Scholar 

  4. Li YS, Ju X, Gao XF, Zhao YY, Wu YF. Immobilization enzyme fluorescence capillary analysis for determination of lactic acid. Anal Chim Acta. 2008;610(2):249–56. https://doi.org/10.1016/j.aca.2008.01.049.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang HY, Tan XX, Kang K, Wang W, Lian KQ, Kang WJ. Simultaneous determination of lactic acid and pyruvic acid in tissue and cell culture media by gas chromatography after in situ derivatization-ultrasound-assisted emulsification microextraction. Anal Bioanal Chem. 2019;411(3):787–95. https://doi.org/10.1007/s00216-018-1502-z.

    Article  CAS  PubMed  Google Scholar 

  6. Ding XM, Lin SH, Weng HB, Liang JY. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry. J Sep Sci. 2018;41(12):2576–84. https://doi.org/10.1002/jssc.201701555.

    Article  CAS  PubMed  Google Scholar 

  7. Cevasco G, Piatek AM, Scapolla C, Thea S. A simple, sensitive and efficient assay for the determination of D- and l-lactic acid enantiomers in human plasma by high-performance liquid chromatography. J Chromatogr A. 2011;1218(6):787–92. https://doi.org/10.1016/j.chroma.2010.12.041.

    Article  CAS  PubMed  Google Scholar 

  8. Franco EJ, Hofstetter H, Hofstetter O. Determination of lactic acid enantiomers in human urine by high-performance immunoaffinity LC-MS. J Pharmaceut Biomed. 2009;49(4):1088–91. https://doi.org/10.1016/j.jpba.2009.01.033.

    Article  CAS  Google Scholar 

  9. Sajewicz M, John E, Kronenbach D, Gontarska M, Kowalska T. TLC study of the separation of the enantiomers of lactic acid. Acta Chromatogr. 2008;20(3):367–82. https://doi.org/10.1556/AChrom.20.2008.3.5.

    Article  CAS  Google Scholar 

  10. Shahangi F, Chermahini AN, Dabbagh HA, Teimouri A, Farrokhpour H. Enantiomeric separation of D- and L-lactic acid enantiomers by use of nanotubular cyclicpeptides: a DFT study. Comput Theor Chem. 2013;1020:163–9. https://doi.org/10.1016/j.comptc.2013.08.001.

    Article  CAS  Google Scholar 

  11. Motonaka J, Katumoto Y, Ikeda S. Preparation and properties of enzyme sensors for l-lactic and d-lactic acids in optical isomers. Anal Chim Acta. 1998;368(1):91–5. https://doi.org/10.1016/S0003-2670(98)00188-3.

    Article  CAS  Google Scholar 

  12. Pohanka M. D-Lactic acid as a metabolite: toxicology, diagnosis, and detection. BioMed Res Int. 2020;2020(2):1–9. https://doi.org/10.1155/2020/3419034.

    Article  CAS  Google Scholar 

  13. Angell JW, Jones GL, Voigt K, Grove-White DH. Successful correction of D-lactic acid neurotoxicity (drunken lamb syndrome) by bolus administration of oral sodium bicarbonate. Vet Rec. 2013;173(8):193–3. https://doi.org/10.1136/vr.101536.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou DD, Zeng K, Yang MH. Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid. Microchim Acta. 2019;186(2):7. https://doi.org/10.1007/s00604-018-3214-7.

    Article  CAS  Google Scholar 

  15. Schuck A, Kim HE, Moreira JK, Lora PS, Kim YS. A graphene-based enzymatic biosensor using a common-gate field-effect transistor for L-lactic acid detection in blood plasma samples. Sensors. 2021;21(5):1852. https://doi.org/10.3390/s21051852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlino MV, Valenti N, Cesaro F, Costanzo A, Cristiano G, Guarino M, et al. Predictors of Intensive Care Unit admission in patients with coronavirus disease 2019 (COVID-19). Monaldi Arch Chest Dis. 2020;90(3):430–6. https://doi.org/10.4081/monaldi.2020.1410.

    Article  Google Scholar 

  17. Tsutsui H, Mochizuki T, Maeda T, Noge I, Kitagawa Y, Min JZ, et al. Simultaneous determination of DL-lactic acid and DL-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC-ESI-MS/MS. Anal Bioanal Chem. 2012;404(6-7):1925–34. https://doi.org/10.1007/s00216-012-6320-0.

    Article  CAS  PubMed  Google Scholar 

  18. Norton D, Crow B, Bishop M, Kovalcik K, George J, Bralley JA. High performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) assay for chiral separation of lactic acid enantiomers in urine using a teicoplanin based stationary phase. J Chromatogr B. 2007;850(1-2):190–8. https://doi.org/10.1016/j.jchromb.2006.11.020.

    Article  CAS  Google Scholar 

  19. Sonntag D, Fabian G, Scholtis S, Werner L. Gas chromatographic determination of lactic acid enantiomers by using a chiral stationary column. Dtsch Lebensm-Rundsch. 2004;100(9):348-351. https://www.researchgate.net/publication/289358897_Gas_chromatogr-aphic_determination_of_lactic_acid_enantiomers_by_using_a_chiral_stationary_column.

  20. Todoroki K, Goto K, Nakano T, Ishii Y, Min JZ, Inoue K, et al. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as an enantioseparation enhancer for fluorescence chiral derivatization-liquid chromatographic analysis of DL-lactic acid. J Chromatogr A. 2014;1360:188–95. https://doi.org/10.1016/j.chroma.2014.07.077.

    Article  CAS  PubMed  Google Scholar 

  21. Henry H, Conus NM, Steenhout P, Beguin A, Boulat O. Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2012;26(4):425–8. https://doi.org/10.1002/bmc.1681.

    Article  CAS  PubMed  Google Scholar 

  22. Kim HE, Schuck A, Lee SH, Lee Y, Kang M, Kim YS. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens Bioelectron. 2021;182:113168. https://doi.org/10.1016/j.bios.2021.113168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li ZD, Li F, Xing Y, Liu Z, You ML, Li YC, et al. Pen-on-paper strategy for point-of-care testing: rapid prototyping of fully written microfluidic biosensor. Biosens Bioelectron. 2017;98:478–85. https://doi.org/10.1016/j.bios.2017.06.061.

    Article  CAS  PubMed  Google Scholar 

  24. Castelli FA, Rosati G, Moguet C, Fuentes C, Marrugo-Ramírez J, Lefebvre T, et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-021-03586-z.

  25. Nie R, Huang J, Xu X, Yang L. A portable pencil-like immunosensor for point-of-care testing of inflammatory biomarkers. Anal Bioanal Chem. 2020;412(13):3231–9. https://doi.org/10.1007/s00216-020-02582-z.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Meng HM, An Y, Liu J, Yang R, Qu L, et al. A fluorescent nanosphere-based immunochromatography test strip for ultrasensitive and point-of-care detection of tetanus antibody in human serum. Analy Bioanal Chem. 2020;412(5):1151–8. https://doi.org/10.1007/s00216-019-02343-7.

    Article  CAS  Google Scholar 

  27. Maduraiveeran G, Chen AC. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim Acta. 2021;368:7. https://doi.org/10.1016/j.electacta.2020.137612.

    Article  CAS  Google Scholar 

  28. Arivazhagan M, Shankar A, Maduraiveeran G. Hollow sphere nickel sulfide nanostructures-based enzyme mimic electrochemical sensor platform for lactic acid in human urine. Microchim Acta. 2020;187(8):9. https://doi.org/10.1007/s00604-020-04431-3.

    Article  CAS  Google Scholar 

  29. Calio A, Dardano P, Di Palma V, Bevilacqua MF, Di Matteo A, Iuele H, et al. Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sensor Actuat B-Chem. 2016;236:343–9. https://doi.org/10.1016/j.snb.2016.05.156.

    Article  CAS  Google Scholar 

  30. Ibupoto ZH, Shah S, Khun K, Willander M. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors. 2012;12(3):2456–66. https://doi.org/10.3390/s120302456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gimenez-Gomez P, Gutierrez-Capitan M, Capdevila F, Puig-Pujol A, Fernandez-Sanchez C, Jimenez-Jorquera C. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability. Analy Chim Acta. 2016;905:126–33. https://doi.org/10.1016/j.aca.2015.11.032.

    Article  CAS  Google Scholar 

  32. Shimomura T, Sumiya T, Ono M, Ito T, Hanaoka T. Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal Chim Acta. 2012;714:114–20. https://doi.org/10.1016/j.aca.2011.11.053.

    Article  CAS  PubMed  Google Scholar 

  33. Portosi V, Laneve D, Falconi MC, Prudenzano F. Advances on photonic crystal fiber sensors and applications. Sensors. 2019;19(8):1892. https://doi.org/10.3390/s19081892.

    Article  CAS  PubMed Central  Google Scholar 

  34. Lv ZG, Teng H. Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber. Chin Phys B. 2021;30(4):044209. https://doi.org/10.1088/1674-1056/abe231.

    Article  CAS  Google Scholar 

  35. Zhang Y, Bu XQ. Narrow linewidth erbium-doped fiber laser incorporating with photonic crystal fiber based Fabry-Perot interferometer for temperature sensing applications. Optik. 2020;219:165005. https://doi.org/10.1016/j.ijleo.2020.165005.

    Article  CAS  Google Scholar 

  36. Matsui T, Tsujikawa K, Okuda T, Hanzawa N, Sagae Y, Nakajima K, et al. Effective area enlarged photonic crystal fiber with quasi-uniform air-hole structure for high power transmission. IEICE Trans Commun. 2020;E103B(4):415–21. https://doi.org/10.1587/transcom.2019EBP3100.

    Article  Google Scholar 

  37. Yan X, Shen RX, Cheng TL, Li SG. Research on filtering characteristics of asymmetric photonic crystal fiber based on gold coating. Opt Commun. 2021;488:126860. https://doi.org/10.1016/j.optcom.2021.126860.

    Article  CAS  Google Scholar 

  38. Kazarian AA, Rodriguez ES, Deverell JA, McCord J, Muddiman DC, Paull B. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. Anal Chim Acta. 2016;905:1–7. https://doi.org/10.1016/j.aca.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  39. Kaur V, Singh S. A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing. J Comput Electron. 2019;18(1):319–28. https://doi.org/10.1007/s10825-019-01305-7.

    Article  CAS  Google Scholar 

  40. Russell P. Photonic crystal fibers. Science. 2003;299(5605):358–62. https://doi.org/10.1109/JLT.2006.885258.

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Zhang AY, Wheeler DA, Bond TC, Gu C, Li Y. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Anal Bioanal Chem. 2012;402(2):687–91. https://doi.org/10.1007/s00216-011-5575-1.

    Article  CAS  PubMed  Google Scholar 

  42. Yang JC, Shen R, Yan PX, Liu YH, Li XM, Zhang P, et al. Fluorescence sensor for volatile trace explosives based on a hollow core photonic crystal fiber. Sensor Actuat B-Chem. 2020;306:127585. https://doi.org/10.1016/j.snb.2019.127585.

    Article  CAS  Google Scholar 

  43. Chen HF, Jiang QJ, Qiu YQ, Chen XC, Fan B, Wang Y, et al. Hollow-core-photonic-crystal-fiber-based miniaturized sensor for the detection of aggregation-induced-emission molecules. Anal Chem. 2019;91(1):780–4. https://doi.org/10.1021/acs.analchem.8b03219.

    Article  CAS  PubMed  Google Scholar 

  44. Liu XX, Song XD, Dong ZY, Meng XT, Chen YP, Yang L. Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein. Biosens Bioelectron. 2017;91:431–5.

    Article  CAS  Google Scholar 

  45. Matsui Y, Kitazumi Y, Shirai O, Kenji K. Simultaneous detection of lactate enantiomers based on diffusion-controlled bioeletrocatalysis. Anal Sci. 2018;34(10):1137–42. https://doi.org/10.2116/analsci.18P202.

    Article  CAS  PubMed  Google Scholar 

  46. Tan L, Wang Y, Liu XQ, Ju HX, Li JS. Simultaneous determination of L- and D-lactic acid in plasma by capillary electrophoresis. J Chromatogr B. 2005;814(2):393–8.

    Article  CAS  Google Scholar 

  47. Girotti S, Muratori M, Fini F, Ferri EN, Carrea G, Koran M, et al. Luminescent enzymatic flow sensor for D- and L-lactate assay in beer. Eur Food Res Technol. 2000;210(3):216–9. https://doi.org/10.1007/PL00005515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21775017 and 22074014) and the Natural Science Foundation of Jilin Province, China (Grant No. 20200404153YY). The authors acknowledge the support from Jilin Provincial Department of Education.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Ethics approval

The human serum samples used in this study were approved by the Ethics Committee of The First Bethune Hospital of Jilin University in Changchun, China

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 13.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z., Li, M., Xu, J. et al. A photonic crystal fiber–based fluorescence sensor for simultaneous and sensitive detection of lactic acid enantiomers. Anal Bioanal Chem 414, 1641–1649 (2022). https://doi.org/10.1007/s00216-021-03788-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03788-5

Keywords