Skip to main content
Log in

Fabrication of carbon dots for sequential on–off-on determination of Fe3+ and S2− in solid-phase sensing and anti-counterfeit printing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glutathione and 2-aminopyridine are used as carbon sources to prepare carbon dots (CDs) by a one-step hydrothermal reaction. The results show that the average particle diameter of CDs is 8.64 nm with uniform size distribution and the fluorescence quantum yield is 13.62%. We further demonstrate that novel CDs possess highly selective sensing of Fe3+ from 0.2 to 200 μM with a low detection limit (0.194 μM). Meanwhile, the fluorescence of CDs can be repeated many times by the addition of S2−. Moreover, the CDs are used for biological imaging of living cells with well cell penetrability and low toxicity. Furthermore, it is successfully applied for anti-counterfeiting and information encryption. More interestingly, it can be doped with hydrogel and filter paper to prepare solid-phase sensors exhibiting high sensitivity and fast response, demonstrating their tremendous potential for the simple, rapid, and low-cost monitoring of Fe3+ and S2−.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Javed N, O’Carroll DM. Carbon dots and stability of their optical properties. Part Part Syst Char. 2021;38(4):2000271.

    Article  CAS  Google Scholar 

  2. Liu M, Chen B, Li C, Huang C. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21:449–71.

    Article  CAS  Google Scholar 

  3. Li M, Li Y, Xie R, Liu J, Gan L, Long M. Green synthesis of superior molecular fluorophores from chitosan assisted with cellulase for cell nucleus imaging and photosensitive printing. ACS Sustain Chem Eng. 2020;8(16):6323–32.

    Article  CAS  Google Scholar 

  4. Du J, Xu N, Fan J, Sun W, Peng X. Carbon dots for in vivo bioimaging and theranostics. Small. 2019;15(32):1805087.

    Article  Google Scholar 

  5. Shi X, Meng H, Sun Y, Qu L, Lin Y, Li Z, Du D. Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small. 2019;15(48):e1901507.

    Article  PubMed  Google Scholar 

  6. Zhu Z, Zhai Y, Li Z, Zhu P, Mao S, Zhu C, Du D, Belfiore L, Tang J, Lin Y. Red carbon dots: optical property regulations and applications. Mater Today. 2019;30:52–79.

    Article  CAS  Google Scholar 

  7. Sun Y, Liu S, Sun L, Wu S, Hu G, Pang X, Smith AT, Hu C, Zeng S, Wang W, Liu Y, Zheng M. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat Commun. 2020;11(1):5591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan F, Jiang Y, Sun X, Wei J, Chen L, Zhang Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020;13(1):52–60.

    Article  CAS  Google Scholar 

  9. Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci. 2019;6(23):1901316.

    Article  CAS  Google Scholar 

  10. Yang P, Zhu Z, Li X, Zhang T, Zhang W, Chen M, Zhou X. Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite. J Alloys Compd. 2020;834:154399.

    Article  CAS  Google Scholar 

  11. Tan J, Li Q, Meng S, Li Y, Yang J, Ye Y, Tang Z, Qu S, Ren X. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv Mater. 2021;33(16):2006781.

    Article  CAS  Google Scholar 

  12. Han Z, Li P, Deng Y, Li H. Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption. Chem Eng J. 2021;415:128999.

    Article  CAS  Google Scholar 

  13. Geng X, Sun Y, Guo Y, Zhao Y, Zhang K, Xiao L, Qu L, Li Z. Fluorescent carbon dots for in situ monitoring of lysosomal ATP levels. Anal Chem. 2020;92(11):7940–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kalytchuk S, Zdražil L, Bad’ura Z, Medved’ M, Langer M, Paloncýová M, Zoppellaro G, Kershaw SV, Rogach AL, Otyepka M, Zbořil R. Carbon dots detect water-to-ice phase transition and act as alcohol sensors via fluorescence turn-off/on mechanism. ACS Nano. 2021;15(4):6582–93.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan F, Wang Y-K, Sharma G, Dong Y, Zheng X, Li P, Johnston A, Bappi G, Fan J, Kung H, Chen B, Saidaminov M, Singh K, Voznyy O, Bakr O, Lu Z-H, Sargent E. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat Photonics. 2020;14:171–6.

    Article  CAS  Google Scholar 

  16. Zhi B, Yao X, Cui Y, Orr G, Haynes CL. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale. 2019;11(43):20411–28.

    Article  CAS  PubMed  Google Scholar 

  17. Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta. 2019;196:456–78.

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Chen W, Chen X, Zhang X, Zhou H, Du H, Wang M, Ma Y, Jin X. Detection of Cu2+ and S2- with fluorescent polymer nanoparticles and bioimaging in HeLa cells. Anal Bioanal Chem. 2021;413(15):3945–53.

    Article  CAS  PubMed  Google Scholar 

  19. Wu D, Li B, Zhao Q, Liu Q, Wang D, He B, Wei Z, Leong D, Wang G, Qian H. Assembling defined DNA nanostructure with nitrogen-enriched carbon dots for theranostic cancer applications. Small. 2020;16:1906975.

    Article  CAS  Google Scholar 

  20. Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: opportunities and challenges. Coord Chem Rev. 2021;442:214010.

    Article  CAS  Google Scholar 

  21. Lesani P, Singh G, Viray C, Ramaswamy Y, Zhu D, Kingshott P, Lu Z, Zreiqat H. Two-photon dual-emissive carbon dot-based probe: deep tissue imaging and ultrasensitive sensing of intracellular ferric ions. ACS Appl Mater Interfaces. 2020;12:18395–406.

    Article  CAS  PubMed  Google Scholar 

  22. Jin X, She M, Yang J, Chen J, Ma X, Zhou H, Chen W, Leng X, Li J. Large-scale synthetic NPs@Polymer composite for high efficient and reversible detection of Cu2+. Dyes Pigm. 2021;192:109417.

  23. Yue J, Li L, Cao L, Zan M, Yang D, Wang Z, Chang Z, Mei Q, Miao P, Dong W-F. Two-step hydrothermal preparation of carbon dots for calcium ion detection. ACS Appl Mater Interfaces. 2019;11(47):44566–72.

    Article  CAS  PubMed  Google Scholar 

  24. Su J, Lu S, Hai J, Liang K, Li T, Sun S, Chen F, Yang Z, Wang B. Confining carbon dots in porous wood: the singlet oxygen enhancement strategy for photothermal signal-amplified detection of Mn2+. ACS Sustain Chem Eng. 2020;8(48):17687–96.

    Article  CAS  Google Scholar 

  25. Sun Z, Zhou Y, Zhou W, Luo J, Liu R, Zhang X, Zhou L, Pang Q. Pb(ii) detection and versatile bio-imaging of green-emitting carbon dots with excellent stability and bright fluorescence. Nanoscale. 2021;13(4):2472–80.

    Article  CAS  PubMed  Google Scholar 

  26. Thomson AM, Rogers JT, Leedman PJ. Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J Biochem Cell Biol. 1999;31(10):1139–52.

    Article  CAS  PubMed  Google Scholar 

  27. Tripathy SK, Woo JY, Han C-S. Colorimetric detection of Fe(III) ions using label-free gold nanoparticles and acidic thiourea mixture. Sens Actuators B Chem. 2013;181:114–8.

    Article  CAS  Google Scholar 

  28. Jia J, Lin B, Gao Y, Jiao Y, Li L, Dong C, Shuang S. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging. Spectrochim Acta A. 2019;211:363–72.

    Article  CAS  Google Scholar 

  29. Andrews N. Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet. 2000;1:75–98.

    Article  CAS  PubMed  Google Scholar 

  30. Umbreit J. Iron deficiency: a concise review. Am J Hematol. 2005;78:225–31.

    Article  CAS  PubMed  Google Scholar 

  31. Shi L, Hou Z, Zhang C, Zhang G, Zhang Y, Dong C, Shuang S. Concentration-dependent multicolor fluorescent carbon dots for colorimetric and fluorescent bimodal detections of Fe3+ and l-ascorbic acid. Anal Methods. 2019;11(5):669–76.

    Article  Google Scholar 

  32. Ma X, Jin X, Zhou H, Wang D, Zhou X, Chen J, Li M, Du H, She M. Near-infrared fluorescent probe for rapid detecting H2S and its application in nanofibrous film and living cells. Dyes Pigm. 2021;188:109221.

    Article  CAS  Google Scholar 

  33. Shi B, Yan Q, Tang J, Xin K, Zhang J, Zhu Y, Xu G, Wang R, Chen J, Gao W, Zhu T, Shi J, Fan C, Zhao C, Tian H. Hydrogen sulfide-activatable second near-infrared fluorescent nanoassemblies for targeted photothermal cancer therapy. Nano Lett. 2018;18(10):6411–6.

    Article  CAS  PubMed  Google Scholar 

  34. Aroca A, Gotor C, Bassham D, Romero L. Hydrogen sulfide: from a toxic molecule to a key molecule of cell life. Antioxidants. 2020;9:621.

    Article  CAS  PubMed Central  Google Scholar 

  35. Yang L, Zhao J, Yu X, Zhang R, Han G, Liu R, Liu Z, Zhao T, Han M-Y, Zhang Z. Dynamic mapping of spontaneously produced H2S in the entire cell space and in live animals using a rationally designed molecular switch. Analyst. 2018;143(8):1881–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Ni D, Rosenkrans ZT, Cao T, Cai W. Smart H2S-triggered/therapeutic system (SHTS)-based nanomedicine. Adv Sci. 2019;6(22):1901724.

    Article  CAS  Google Scholar 

  37. Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol. 2018;149:110–23.

    Article  CAS  PubMed  Google Scholar 

  38. Yue X, Li C, Yang Z. A novel colorimetric and fluorescent probe for trivalent cations based on rhodamine B derivative. J Photochem Photobiol A. 2018;351:1–7.

    Article  CAS  Google Scholar 

  39. Feng S, Xia Q, Feng G. lminocoumarin-based red to near-infrared fluorescent turn-on probe with a large Stokes shift for imaging H2S in living cells and animals. Dyes Pigm. 2019;163:447–53.

    Article  CAS  Google Scholar 

  40. Kelesidis T, Falagas ME. Substandard/counterfeit antimicrobial drugs. Clin Microbiol, Rev. 2015;28:443–64.

    Article  CAS  Google Scholar 

  41. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–85.

    Article  CAS  PubMed  Google Scholar 

  42. Gao Z, Han Y, Wang F. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat Commun. 2018;9:3977.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carro-Temboury MR, Arppe R, Vosch T, Srensen TJ. An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Sci Adv. 2018;4(1):e1701384.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li X, Zhao S, Li B, Yang K, Lan M, Zeng L. Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application. Coord Chem Rev. 2021;431:213686.

    Article  CAS  Google Scholar 

  45. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, Luo HQ. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens Actuators B Chem. 2017;240:949–55.

    Article  CAS  Google Scholar 

  46. Ai L, Yang Y, Wang B, Chang J, Tang Z, Yang B, Lu S. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Sci Bull. 2021;66(8):839–56.

    Article  CAS  Google Scholar 

  47. Zu F, Yan F-Y, Bai Z, Xu J, Wang Y, Huang Y, Zhou X. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta. 2017;184:1899–914.

    Article  CAS  Google Scholar 

  48. Liu X, Yang Y, Xing X, Wang Y. Grey level replaces fluorescent intensity: fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sens Actuators B Chem. 2018;255:2356–66.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 21807085, 21807087, and 22077099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xilang Jin or Mengyao She.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Jin, X., Zhou, H. et al. Fabrication of carbon dots for sequential on–off-on determination of Fe3+ and S2− in solid-phase sensing and anti-counterfeit printing. Anal Bioanal Chem 413, 7473–7483 (2021). https://doi.org/10.1007/s00216-021-03709-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03709-6

Keywords

Navigation