Skip to main content
Log in

Photo-induced green synthesis of bimetallic Ag/Pd nanoparticles decorated reduced graphene oxide/nitrogen-doped graphene quantum dots nanocomposite as an amperometric sensor for nitrite detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present study introduces a novel nanocomposite based on reduced graphene oxide, nitrogen-doped graphene quantum dots, and palladium and silver nanoparticles (rGO/NGQD/AgPd) as an electrocatalyst toward nitrite oxidation reaction. Metal nanoparticles were prepared via a green one-pot photochemical reduction procedure utilizing UV light and NGQD simultaneously as a reducing and directing agent. Formation of the nanocomposite was thoroughly demonstrated by the FT-IR, XRD, Raman, XPS, FE-SEM, and TEM characterization tests. Various electrochemical tests evaluated the efficiency of the prepared sensing platform on the surface of a gold working electrode. Sensitivity and limit of detection (LOD) were calculated to be 0.854 μA.μM−1.cm−2 and 0.052 μM, respectively, from the chronoamperometry data. Finally, the proposed sensor was successfully applied for the determination of nitrite ions in river and mineral water samples as natural water sources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chamandoost S, Fateh Moradi M, Hosseini M-J. A review of nitrate and nitrite toxicity in foods. Journal of Human Environment and Health Promotion. 2016;1:80–6.

    Article  Google Scholar 

  2. Kilfoy BA, Zhang Y, Park Y, Holford TR, Schatzkin A, Hollenbeck A, et al. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP Diet and Health Study. Int J cancer. Wiley Online Library. 2011;129:160–72.

    Article  PubMed  CAS  Google Scholar 

  3. Yan MAO, Yu BAO, Dong-Xue HAN, Bing Z. Research progress on nitrite electrochemical sensor. Chinese J Anal Chem. Elsevier. 2018;46:147–55.

    Article  Google Scholar 

  4. Adarsh N, Shanmugasundaram M, Ramaiah D. Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem. ACS Publications. 2013;85:10008–12.

    Article  PubMed  CAS  Google Scholar 

  5. Manikandan VS, Adhikari B, Chen A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst. Royal Society of Chemistry. 2018;143:4537–54.

    Article  PubMed  CAS  Google Scholar 

  6. Julkapli NM, Bagheri S. Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy. Elsevier. 2015;40:948–79.

    Article  CAS  Google Scholar 

  7. Machado BF, Serp P. Graphene-based materials for catalysis. Catal Sci Technol. Royal Society of Chemistry. 2012;2:54–75.

    Article  CAS  Google Scholar 

  8. Tajiki A, Abdouss M, Sadjadi S, Mazinani S. Voltammetric detection of nitrite anions employing imidazole functionalized reduced graphene oxide as an electrocatalyst. Electroanalysis. Wiley Online Library. 2020;32:2290–8.

    Article  CAS  Google Scholar 

  9. Campbell FW, Compton RG. The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem. Springer. 2010;396:241–59.

    Article  PubMed  CAS  Google Scholar 

  10. Sun W, Cai X, Wang Z, Zhao H, Lan M. A novel modification method via in-situ reduction of AuAg bimetallic nanoparticles by polydopamine on carbon fiber microelectrode for H2O2 detection. Microchem J. Elsevier. 2020;154:104595.

    Article  CAS  Google Scholar 

  11. Yu H, Feng X, Chen X, Wang S, Jin J. A highly sensitive determination of sulfite using a glassy carbon electrode modified with gold nanoparticles-reduced graphene oxide nano-composites. J Electroanal Chem. Elsevier. 2017;801:488–95.

    Article  CAS  Google Scholar 

  12. Xiao T, Huang J, Wang D, Meng T, Yang X. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta. Elsevier. 2020;206:120210.

    Article  PubMed  CAS  Google Scholar 

  13. Goulart LA, Gonçalves R, Correa AA, Pereira EC, Mascaro LH. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta. Springer. 2018;185:1–9.

    Article  CAS  Google Scholar 

  14. Li J, Feng H, Li J, Jiang J, Feng Y, He L, et al. Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim Acta. Elsevier. 2015;176:827–35.

    Article  CAS  Google Scholar 

  15. Ghadimi H, Nasiri-Tabrizi B, Nia PM, Basirun WJ, Tehrani RMA, Lorestani F. Nanocomposites of nitrogen-doped graphene decorated with a palladium silver bimetallic alloy for use as a biosensor for methotrexate detection. RSC Adv. Royal Society of Chemistry. 2015;5:99555–65.

    Article  CAS  Google Scholar 

  16. Grzelczak M, Liz-Marzán LM. The relevance of light in the formation of colloidal metal nanoparticles. Chem Soc Rev. Royal Society of Chemistry. 2014;43:2089–97.

    Article  PubMed  CAS  Google Scholar 

  17. Fageria P, Uppala S, Nazir R, Gangopadhyay S, Chang C-H, Basu M, et al. Synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction. Langmuir. ACS Publications. 2016;32:10054–64.

    Article  PubMed  CAS  Google Scholar 

  18. Ju J, Zhang R, Chen W. Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione. Sensors Actuators B Chem. Elsevier. 2016;228:66–73.

    Article  CAS  Google Scholar 

  19. Jiang D, Zhang Y, Chu H, Liu J, Wan J, Chen M. N-doped graphene quantum dots as an effective photocatalyst for the photochemical synthesis of silver deposited porous graphitic C 3 N 4 nanocomposites for nonenzymatic electrochemical H 2 O 2 sensing. RSC Adv. Royal Society of Chemistry. 2014;4:16163–71.

    Article  CAS  Google Scholar 

  20. Zeng Z, Chen S, Tan TTY, Xiao F-X. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal Today. Elsevier. 2018;315:171–83.

    Article  CAS  Google Scholar 

  21. Yan X, Li B, Cui X, Wei Q, Tajima K, Li L. Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Lett. ACS Publications. 2011;2:1119–24.

    Article  PubMed  CAS  Google Scholar 

  22. Fan M, Zhu C, Yang J, Sun D. Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction. Electrochim Acta. Elsevier. 2016;216:102–9.

    Article  CAS  Google Scholar 

  23. Yeh T-F, Chen S-J, Teng H. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy. Elsevier. 2015;12:476–85.

    Article  CAS  Google Scholar 

  24. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. ACS Publications. 2010;4:4806–14.

    Article  PubMed  CAS  Google Scholar 

  25. Rahimi-Aghdam T, Shariatinia Z, Hakkarainen M, Haddadi-Asl V. Nitrogen and phosphorous doped graphene quantum dots: excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. J Hazard Mater. Elsevier. 2020;381:121013.

    Article  PubMed  CAS  Google Scholar 

  26. Bahrami A, Kazeminezhad I, Abdi Y. Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell. Superlattices Microstruct. Elsevier. 2019;125:125–37.

    Article  CAS  Google Scholar 

  27. Murugesan B, Pandiyan N, Arumugam M, Sonamuthu J, Samayanan S, Yurong C, et al. Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl Surf Sci. Elsevier. 2020;510:145403.

    Article  CAS  Google Scholar 

  28. Ikhsan NI, Rameshkumar P, Pandikumar A, Shahid MM, Huang NM, Kumar SV, et al. Facile synthesis of graphene oxide–silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta. Elsevier. 2015;144:908–14.

    Article  PubMed  CAS  Google Scholar 

  29. Wu J-B, Lin M-L, Cong X, Liu H-N, Tan P-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. Royal Society of Chemistry. 2018;47:1822–73.

    Article  PubMed  CAS  Google Scholar 

  30. Lin L, Song X, Chen Y, Rong M, Zhao T, Jiang Y, et al. One-pot synthesis of highly greenish-yellow fluorescent nitrogen-doped graphene quantum dots for pyrophosphate sensing via competitive coordination with Eu 3+ ions. Nanoscale. Royal Society of Chemistry. 2015;7:15427–33.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, et al. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensors Actuators B Chem. Elsevier. 2018;258:1107–16.

    Article  CAS  Google Scholar 

  32. Khan M, Shaik MR, Adil SF, Kuniyil M, Ashraf M, Frerichs H, et al. Facile synthesis of Pd@ graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction, Sci Rep. Nature Publishing Group. 2020;10:1–14.

  33. Ortiz-Medina J, Wang Z, Cruz-Silva R, Morelos-Gomez A, Wang F, Yao X, et al. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv Mater. Wiley Online Library. 2019;31:1805717.

    Article  CAS  Google Scholar 

  34. Sahoo S, Sahoo PK, Sharma A, Satpati AK. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sensors Actuators, B Chem [Internet]. Elsevier; 2020;309:127763. Available from: doi:https://doi.org/10.1016/j.snb.2020.127763

  35. Wang Y, Laborda E, Compton RG. Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J Electroanal Chem. Elsevier. 2012;670:56–61.

    Article  CAS  Google Scholar 

  36. Cui L, Zhu J, Meng X, Yin H, Pan X, Ai S. Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sensors Actuators B Chem. Elsevier. 2012;161:641–7.

    Article  CAS  Google Scholar 

  37. Guidelli R, Pergola F, Raspi G. Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media. Anal Chem. ACS Publications. 1972;44:745–55.

    Article  PubMed  CAS  Google Scholar 

  38. Lei P, Zhou Y, Zhu R, Wu S, Jiang C, Dong C, et al. Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Microchim Acta. Springer. 2020;187:1–9.

    Article  CAS  Google Scholar 

  39. Rao H, Liu Y, Zhong J, Zhang Z, Zhao X, Liu X, et al. Gold nanoparticle/chitosan@ N, S co-doped multiwalled carbon nanotubes sensor: fabrication, characterization, and electrochemical detection of catechol and nitrite. ACS Sustain Chem Eng. ACS Publications. 2017;5:10926–39.

    Article  CAS  Google Scholar 

  40. Rabti A, Ben AS, Raouafi N. A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim Acta. Springer. 2016;183:3111–7.

    Article  CAS  Google Scholar 

  41. Zhao Z, Zhang J, Wang W, Sun Y, Li P, Hu J, et al. Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl Surf Sci. Elsevier. 2019;485:274–82.

    Article  CAS  Google Scholar 

  42. Li Z, An Z, Guo Y, Zhang K, Chen X, Zhang D, et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta. Elsevier. 2016;161:713–20.

    Article  PubMed  CAS  Google Scholar 

  43. Chen H, Yang T, Liu F, Li W. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors Actuators B Chem. Elsevier. 2019;286:401–7.

    Article  CAS  Google Scholar 

  44. Zhao Z, Xia Z, Liu C, Huang H, Ye W. Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta. Elsevier. 2017;256:146–54.

    Article  CAS  Google Scholar 

  45. Zhao X, Li N, Jing M, Zhang Y, Wang W, Liu L, et al. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim Acta. Elsevier. 2019;295:434–43.

    Article  CAS  Google Scholar 

  46. Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK, Boukherroub R. Towards green synthesis of monodisperse Cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor. Sensors Actuators B Chem. Elsevier. 2018;266:873–82.

    Article  CAS  Google Scholar 

  47. Chen S-S, Shi Y-C, Wang A-J, Lin X-X, Feng J-J. Free-standing Pt nanowire networks with clean surfaces: highly sensitive electrochemical detection of nitrite. J Electroanal Chem. Elsevier. 2017;791:131–7.

    Article  CAS  Google Scholar 

  48. Pan F, Chen D, Zhuang X, Wu X, Luan F, Zhang S, et al. Fabrication of gold nanoparticles/l-cysteine functionalized graphene oxide nanocomposites and application for nitrite detection. J Alloys Compd. Elsevier. 2018;744:51–6.

    Article  CAS  Google Scholar 

  49. Hameed RMA, Medany SS. Construction of core-shell structured nickel@ platinum nanoparticles on graphene sheets for electrochemical determination of nitrite in drinking water samples. Microchem J. Elsevier. 2019;145:354–66.

    Article  CAS  Google Scholar 

  50. Jian J-M, Fu L, Ji J, Lin L, Guo X, Ren T-L. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sensors Actuators B Chem. Elsevier. 2018;262:125–36.

    Article  CAS  Google Scholar 

  51. Wang Y, Zeng Z, Qiao J, Dong S, Liang Q, Shao S. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta. Elsevier. 2021;221:121605.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by Amirkabir University of Technology (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdouss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajiki, A., Abdouss, M., Sadjadi, S. et al. Photo-induced green synthesis of bimetallic Ag/Pd nanoparticles decorated reduced graphene oxide/nitrogen-doped graphene quantum dots nanocomposite as an amperometric sensor for nitrite detection. Anal Bioanal Chem 413, 6289–6301 (2021). https://doi.org/10.1007/s00216-021-03584-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03584-1

Keywords

Navigation