Skip to main content
Log in

A highly effective “turn-on” camphor-based fluorescent probe for rapid and sensitive detection and its biological imaging of Fe2+

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a novel fluorescent probe CBO was synthesized for detecting Fe2+ using the natural monoterpenketone camphor as the starting material. The probe CBO displayed turn-on fluorescence to Fe2+ accompanied by the solution change from colorless to green. As expected, there was an excellent linear relationship between the fluorescence intensity of probe CBO and the concentration of Fe2+ (0–20 μM), and the detection limit was as low as 1.56×10−8 M. In particular, CBO could selectively sense Fe2+ more than other analytes (Fe3+ included) through the N-oxide strategy, and quickly responded to Fe2+ (60 s) over a wide pH (4–14) range. Additionally, based on the rapid fluorescence response of CBO to Fe2+, a simple test strip-based detector was designed for boosting practical applicability. The probe CBO had been successfully applied to the fluorescence imaging of Fe2+ in onion cells and living zebrafish. The probe CBO was a powerful tool of detecting Fe2+ level in organisms, which was of significance to understand the role of Fe2+ in Fe2+-related physical processes and diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aron AT, Reeves AG, Chang CJ. Activity-based sensing fluorescent probes for iron in biological systems. Curr Opin Chem Biol. 2018;43:113–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wilson MT, Reeder BJ. Oxygen-binding haem proteins. Exp Physiol. 2008;93(1):128–32.

    Article  PubMed  CAS  Google Scholar 

  3. Rouault TA, Tong WH. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol. 2005;6(4):345–51.

    Article  PubMed  CAS  Google Scholar 

  4. Miller WL, Bose HS. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J Lipid Res. 2011;52(12):2111–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sornjai W, Van Long FN, Pion N, Pasquer A, Saurin JC, Marcel V. Iron and hepcidin mediate human colorectal cancer cell growth. Chem Biol Interact. 2020;319:109021.

    Article  PubMed  CAS  Google Scholar 

  6. Tong WH, Rouault T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2014;19(21):5692–700.

    Article  Google Scholar 

  7. Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015;33:8–13.

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365–81.

    Article  PubMed  CAS  Google Scholar 

  9. Prabhu J, Santhoshkumar S, Velmurugan K. A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorganica Chim Acta. 2016;439:1–7.

    Article  CAS  Google Scholar 

  10. Long L, Wang N, Han Y, Huang M, Yuan X, Cao S. A coumarin-based fluorescent probe for monitoring labile ferrous iron in living systems. Analyst. 2018;143(11):2555–62.

    Article  PubMed  CAS  Google Scholar 

  11. Hou GG, Wang CH, Sun JF, Yang MZ, Lin D, Li HJ. Rhodamine-based “turn-on” fluorescent probe with high selectivity for Fe2+ imaging in living cells. Biochem Biophys Res Commun. 2013;439(4):459–63.

    Article  PubMed  CAS  Google Scholar 

  12. Xu Y, Zhang Z, Lv P, Duan Y, Li G, Ye B. Ratiometric fluorescence sensing of Fe 2+/3+ by carbon dots doped lanthanide coordination polymers. J Lumin. 2019;205:519–24.

    Article  CAS  Google Scholar 

  13. Liu T, Liu W, Zhang M, Yu W, Gao F, Li C. Ferrous-Supply-Regeneration Nanoengineering for Cancer-Cell-Specific Ferroptosis in Combination with Imaging-Guided Photodynamic Therapy. ACS Nano. 2018;12(12):12181–92.

    Article  PubMed  CAS  Google Scholar 

  14. Ascher NL, Lake JR, Emond J. Liver transplantation for hepatitis C virus related cirrhosis. Best Pract. Res Clin Gastroenterol. 2000;4(2):307–25.

    Google Scholar 

  15. Haehling SV, Jankowska EA, Veldhuisen DV, Ponikowski P, Anker SD. Iron deficiency and cardiovascular disease. Nat Rev. Cardiol. 2015;12:659–69.

    Article  CAS  Google Scholar 

  16. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dixon S, Lemberg K, Lamprecht M, Skouta R, Zaitsev E, Gleason C. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB. Role of Mitochondria in Ferroptosis. Mol Cell. 2019;73(2):354–363.e3.

    Article  PubMed  CAS  Google Scholar 

  19. Richardson DR, Lane RJR, Becker RM, Huang LH, Whitnall M, Rahmanto YS. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl Acad Sci US A. 2010;107(24):10775–107782.

    Article  CAS  Google Scholar 

  20. Qu Z, Li P, Zhang X, Han K. A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells. J Mater Chem. B. 2016;4(5):887–92.

    Article  PubMed  CAS  Google Scholar 

  21. Liang ZQ, Wang CX, Yang JX, Gao HW, Tian YP, Tao XT. A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New J Chem. 2007;31(6):906–10.

    Article  CAS  Google Scholar 

  22. Malik LA, Bashir A, Qureashi A, Pandith AH. Detection and removal of heavy metal ions: a review. Environ Chem Lett. 2019;17(4):1495–7521.

    Article  CAS  Google Scholar 

  23. Weeks DA, Bruland KW. Improved method for shipboard determination of iron in seawater by flow injection analysis. Anal Chim Acta. 2002;453(1):21–32.

    Article  CAS  Google Scholar 

  24. Sikdar S, Kundu M. A Review on Detection and Abatement of Heavy Metals. Chem Bio Eng Rev. 2017;5(1):18–29.

    Google Scholar 

  25. Lee S, Uliana A, Taylor M, et al. Iron Detection and Remediation with a Functionalized Porous Polymer Applied to Environmental Water Samples. Chem Sci. 2019;10(27):6651–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Munzert SM, Schwarz G, Kurth DG. Kinetic Studies of the Coordination of Mono-and Ditopic Ligands with First Row Transition Metal Ions. Inorg Chem. 2016;55(5):2565–73.

    Article  PubMed  CAS  Google Scholar 

  27. Laschuk NO, Ebralidze II, Quaranta S, et al. Rational design of a material for rapid colorimetric Fe2+ detection. Mater Des. 2016;107(oct.5):18–25.

    Article  CAS  Google Scholar 

  28. Huang Y, Zhang Y, Huo F, Wen Y, Yin C. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes. Sci China Chem. 2020;63(12):1742–55.

    Article  CAS  Google Scholar 

  29. Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch Eur J Physiol. 2013;465(3):347–59.

    Article  CAS  Google Scholar 

  30. Tang YY, Wang CJ, Chen S, Dai HY. A terbium(III) organic framework as a fluorescent probe for selectively sensing of organic small molecules and metal ions especially nitrobenzene and Fe3+. J Coord Chem. 2017;70(24):3996–4007.

    Article  CAS  Google Scholar 

  31. Shi H, Chen H, X Li, Xing J et al. A simple colorimetric and ratiometric fluoride ion probe with large color change. RSC Adv. 2021; 11(1):1-6

  32. Cheng Y, Shabir G, Li X, Fang L, Xu L. Development of a deep-red fluorescent glucose-conjugated bioprobe for in vivo tumor targeting. Chem Commun. 2020;56(7):1070–3.

    Article  CAS  Google Scholar 

  33. Ma S, Fang DC, Ning B. The rational design of a highly sensitive and selective fluorogenic probe for detecting nitric oxide. Chem Commun. 2014;50(49):6475–8.

    Article  CAS  Google Scholar 

  34. Tian X, Murfin LC, Wu L, Lewis SE, James TD. Fluorescent small organic probes for biosensing. Chem Sci. 2021;12(10):3406–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khatun S, Biswas S, Binoy A, et al. Highly chemoselective turn-on fluorescent probe for ferrous (Fe2+) ion detection in cosmetics and live cells. J. Photochem. Photobiol. B Biol. 2020;209:111943.

    Article  CAS  Google Scholar 

  36. Park SH, Kwon N, Lee JH, Yoon J, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev. 2020;49(1):143–79.

    Article  PubMed  CAS  Google Scholar 

  37. Oppolzer W. Camphor derivatives as chiral auxiliaries in asymmetric synthesis. Tetrahedron. 1987;43(9):1969–2004.

    Article  CAS  Google Scholar 

  38. Wang Y, Busch-Petersen J, Feng W, Kiesow TJ, Graybill TL, Jian J. Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists. Bioorg Med Chem Lett. 2009;19(1):114–8.

    Article  PubMed  CAS  Google Scholar 

  39. Stavrakov G, Valcheva V, Philipova I, Doytchinova I. Novel camphane-based anti-tuberculosis agents with nanomolar activity. Eur J Med Chem. 2013;70:372–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hirayama T, Okuda K, Nagasawa H. A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem Sci. 2013;4(3):1250–6.

    Article  CAS  Google Scholar 

  41. Gao G, Wang X, Wang Z, Jin X, Ou L, Zhou J. A simple and effective dansyl acid based “turn-on” fluorescent probe for detecting labile ferrous iron in physiological saline and live cells. Talanta. 2020;215:120908.

    Article  PubMed  CAS  Google Scholar 

  42. Yang L, Chen Q, Gan S, Guo Q, Zhang J, Zhang H. An activatable AIEgen probe for in-situ monitoring and long-term tracking of ferrous ions in living cells. Dyes Pigments. 2021;190:109271.

    Article  CAS  Google Scholar 

  43. Bhuvanesh N, Velmurugan K, Suresh S, Prakash P, John N, Murugan S. Naphthalene based fluorescent chemosensor for Fe2+-ion detection in microbes and real water samples. J Lumin. 2017;188:217–22.

    Article  CAS  Google Scholar 

  44. Ping L. Haibin, Xiao, Bo, Chemistry TJCJo. A Near-infrared Fluorescent Probe for Selective Simultaneous Detection of Fe2+ and Cl in Living Cells. Chin J Chem. 2012;30(9):1992–8.

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (No. 32071707).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonglong Wang or Shifa Wang.

Ethics declarations

Ethics approval

All animal experiments were approved by the Animal Ethical Committee of the Medical School of Southeast University and conducted in strict accordance with the National Care and use of Laboratory Animals by the National Animal Research Authority (China).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Zhang, Y., Li, M. et al. A highly effective “turn-on” camphor-based fluorescent probe for rapid and sensitive detection and its biological imaging of Fe2+. Anal Bioanal Chem 413, 6267–6277 (2021). https://doi.org/10.1007/s00216-021-03581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03581-4

Keywords

Navigation