Skip to main content

Advertisement

Log in

Development and validation of an LC-MS/MS assay for the quantification of allopregnanolone and its progesterone-derived isomers, precursors, and cortisol/cortisone in pregnancy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

This article has been updated

Abstract

Neuroactive steroids are potent neuromodulators that play a critical role in both maternal and fetal health during pregnancy. These stress-responsive compounds are reportedly low in women with perinatal depression and may be associated with poor pregnancy outcomes in animal models. Chronic stress is a risk factor for adverse birth outcomes. Simultaneous quantification of neuroactive steroids, in combination with stress hormones cortisol/cortisone, provides an opportunity to investigate the synergistic relationship of these analytes within the convenience of one assay. A simple, reliable, and sensitive method for quantifying these endogenous compounds is necessary for further research with the potential to advance clinical diagnostic tools during pregnancy. Analytes were extracted from serum with a simple protein precipitation using methanol and then separated and quantified using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). After online extraction, analytes were separated using an Agilent Poroschell 120, 50 × 4.6 mm, 2.7 μm particle size, EC-C18 analytical column. The reliable quantification range was from 0.78 to 1000 ng/mL. QC sample inter- and intraday trueness was between 90 and 110% while inter- and intraday imprecision was less than 10%. Extracted samples were stable up to 7 days at 4 °C and extraction recovery was above 95%. Serum samples from 54 women in pregnancy were analyzed using this method. Here, we provide a validated, fast, and specific assay with sufficient sensitivity that allows for simultaneous quantification of blood serum concentrations of allopregnanolone (3α-hydroxy-5α-pregnan-20-one), pregnanolone (3α-hydroxy-5β-pregnan-20-one), epipregnanolone (3β-hydroxy-5β-pregnan-20-one), pregnenolone, progesterone, cortisol, and cortisone in pregnancy for clinical study samples and clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data and material are available upon request to the corresponding author.

Code availability

Not applicable.

Change history

  • 30 July 2021

    Springer Nature’s version of this paper was updated to present the correct Tables 2 and 3.

References

  1. Paul SM, Purdy RH. Neuroactive steroids. FASEB J. 1992;6(6):2311–22. PMID: 1347506.

  2. Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther. 2007;116:107–24. https://doi.org/10.1016/j.pharmthera.2007.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012;63:1315–26. https://doi.org/10.1016/j.neuropharm.2012.08.012.

    Article  CAS  PubMed  Google Scholar 

  4. Melchior C. Neurosteroids block the memory-impairing effects of ethanol in mice. Pharmacol Biochem Behav. 1996;53:51–6. https://doi.org/10.1016/0091-3057(95)00197-2.

    Article  CAS  PubMed  Google Scholar 

  5. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. In: International Review of Neurobiology: Elsevier; 2001. p. 1–32.

    Google Scholar 

  6. Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, et al. Role of brain allopregnanolone in the plasticity of -aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci. 1998;95:13284–9. https://doi.org/10.1073/pnas.95.22.13284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Timby E, Balgård M, Nyberg S, Spigset O, Andersson A, Porankiewicz-Asplund J, et al. Pharmacokinetic and behavioral effects of allopregnanolone in healthy women. Psychopharmacology. 2006;186:414–24. https://doi.org/10.1007/s00213-005-0148-7.

    Article  CAS  PubMed  Google Scholar 

  8. Belelli D, Bolger MB, Gee KW. Anticonvulsant profile of the progesterone metabolite 5alpha-pregnan-3alpha-ol-20-one. Eur J Pharmacol. 1989;166:325–9.

    Article  CAS  Google Scholar 

  9. Wieland S, Lan NC, Mirasedeghi S, Gee KW. Anxiolytic activity of the progesterone metabolite 5alpha-pregnan-3alpha-ol-20 one. Brain Res. 1991;565:263–8.

    Article  CAS  Google Scholar 

  10. Barbaccia ML, Serra M, Purdy RH, Biggio G. Stress and neuroactive steroids. In: International Review of Neurobiology: Elsevier; 2001. p. 243–72.

    Google Scholar 

  11. Purdy RH, Morrow AL, Moore PH Jr, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A. 1991;88(10):4553–7. https://doi.org/10.1073/pnas.88.10.4553.

  12. Head GA, Jackson KL, Gueguen C. Potential therapeutic use of neurosteroids for hypertension. Front Physiol. 2019;10:1477. https://doi.org/10.3389/fphys.2019.01477.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rasmusson AM, Marx CE, Pineles SL, Locci A, Scioli-Salter ER, Nillni YI, et al. Neuroactive steroids and PTSD treatment. Neurosci Lett. 2017;649:156–63. https://doi.org/10.1016/j.neulet.2017.01.054.

    Article  CAS  PubMed  Google Scholar 

  14. Pineles SL, Nillni YI, Pinna G, Irvine J, Webb A, Arditte Hall KA, et al. PTSD in women is associated with a block in conversion of progesterone to the GABAergic neurosteroids allopregnanolone and pregnanolone measured in plasma. Psychoneuroendocrinology. 2018;93:133–41. https://doi.org/10.1016/j.psyneuen.2018.04.024.

    Article  CAS  PubMed  Google Scholar 

  15. Park MH, Rehman SU, Kim IS, Choi MS, Yoo HH. Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition. J Pharm Biomed Anal. 2017;138:92–9. https://doi.org/10.1016/j.jpba.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  16. Wadhwa PD, Entringer S, Buss C, Lu MC. The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol. 2011;38:351–84. https://doi.org/10.1016/j.clp.2011.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crowley SK, O’Buckley TK, Schiller CE, Stuebe A, Morrow AL, Girdler SS. Blunted neuroactive steroid and HPA axis responses to stress are associated with reduced sleep quality and negative affect in pregnancy: a pilot study. Psychopharmacology. 2016;233:1299–310. https://doi.org/10.1007/s00213-016-4217-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osborne LM, Gispen F, Sanyal A, Yenokyan G, Meilman S, Payne JL. Lower allopregnanolone during pregnancy predicts postpartum depression: an exploratory study. Psychoneuroendocrinology. 2017;79:116–21. https://doi.org/10.1016/j.psyneuen.2017.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellgren C, Åkerud H, Skalkidou A, Bäckström T, Sundström-Poromaa I. Low serum allopregnanolone is associated with symptoms of depression in late pregnancy. Neuropsychobiology. 2014;69:147–53. https://doi.org/10.1159/000358838.

    Article  CAS  PubMed  Google Scholar 

  20. Nappi RE, Petraglia F, Luisi S, Polatti F, Farina C, Genazzani AR. Serum allopregnanolone in women with postpartum “blues”. Obstet Gynecol. 2001;97:4. https://doi.org/10.1016/s0029-7844(00)01112-1.

    Article  Google Scholar 

  21. Deligiannidis KM, Kroll-Desrosiers AR, Mo S, Nguyen HP, Svenson A, Jaitly N, et al. Peripartum neuroactive steroid and γ-aminobutyric acid profiles in women at-risk for postpartum depression. Psychoneuroendocrinology. 2016;70:98–107. https://doi.org/10.1016/j.psyneuen.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meltzer-Brody S, Colquhoun H, Riesenberg R, Epperson CN, Deligiannidis KM, Rubinow DR, et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet. 2018;392:1058–70. https://doi.org/10.1016/S0140-6736(18)31551-4.

    Article  CAS  PubMed  Google Scholar 

  23. Paris JJ, Brunton PJ, Russell JA, Walf AA, Frye CA. Inhibition of 5α-reductase activity in late pregnancy decreases gestational length and fecundity and impairs object memory and central progestogen milieu of juvenile rat offspring: 5α-reductase and gestational outcome. J Neuroendocrinol. 2011;23:1079–90. https://doi.org/10.1111/j.1365-2826.2011.02219.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yawno T, Yan EB, Walker DW, Hirst JJ. Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience. 2007;146:1726–33. https://doi.org/10.1016/j.neuroscience.2007.03.023.

    Article  CAS  PubMed  Google Scholar 

  25. Hirst JJ, Cumberland AL, Shaw JC, Bennett GA, Kelleher MA, Walker DW, et al. Loss of neurosteroid-mediated protection following stress during fetal life. J Steroid Biochem Mol Biol. 2016;160:181–8. https://doi.org/10.1016/j.jsbmb.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  26. Kelleher MA, Hirst JJ, Palliser HK. Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci. 2013;20:1365–75. https://doi.org/10.1177/1933719113485295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vu TT, Hirst JJ, Stark M, Wright IMR, Palliser HK, Hodyl N, et al. Changes in human placental 5α-reductase isoenzyme expression with advancing gestation: effects of fetal sex and glucocorticoid exposure. Reprod Fertil Dev. 2009;21:599. https://doi.org/10.1071/RD08224.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5α-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res. 2003;53:956–64. https://doi.org/10.1203/01.PDR.0000064905.64688.10.

    Article  CAS  PubMed  Google Scholar 

  29. Sadovsky Y, Mesiano S, Burton GJ, Lampl M, Murray JC, Freathy RM, et al. Advancing human health in the decade ahead: pregnancy as a key window for discovery. Am J Obstet Gynecol. 2020;223:312–21. https://doi.org/10.1016/j.ajog.2020.06.031.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilbert Evans SE, Ross LE, Sellers EM, Purdy RH, Romach MK. 3α-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol. 2005;21:268–79. https://doi.org/10.1080/09513590500361747.

    Article  CAS  PubMed  Google Scholar 

  31. Pařízek A, Hill M, Kancheva R, Havlíková H, Kancheva L, Cindr J, et al. Neuroactive pregnanolone isomers during pregnancy. J Clin Endocrinol Metab. 2005;90:395–403. https://doi.org/10.1210/jc.2004-0444.

    Article  CAS  PubMed  Google Scholar 

  32. Pearson Murphy BE. Neuroactive ring A-reduced metabolites of progesterone in human plasma during pregnancy: elevated levels of 5 -dihydroprogesterone in depressed patients during the latter half of pregnancy. J Clin Endocrinol Metab. 2001;86:5981–7. https://doi.org/10.1210/jcem.86.12.8122.

    Article  CAS  PubMed  Google Scholar 

  33. Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, et al. Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab. 2000;85:5. https://doi.org/10.1210/jcem.85.7.6675.

    Article  Google Scholar 

  34. Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, et al. Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab. 1998;83:5. https://doi.org/10.1210/jcem.83.6.4905.

    Article  Google Scholar 

  35. Jin W, Jarvis M, Star-Weinstock M, Altemus M. A sensitive and selective LC-differential mobility-mass spectrometric analysis of allopregnanolone and pregnanolone in human plasma. Anal Bioanal Chem. 2013;405:9497–508. https://doi.org/10.1007/s00216-013-7391-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ke Y, Gonthier R, Labrie F. A sensitive and accurate LC-MS/MS assay with the derivatization of 1-amino-4-methylpiperazine applied to serum allopregnanolone, pregnenolone and androsterone in pre- and postmenopausal women. Steroids. 2017;118:25–31. https://doi.org/10.1016/j.steroids.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  37. Dury AY, Ke Y, Gonthier R, Isabelle M, Simard J-N, Labrie F. Validated LC–MS/MS simultaneous assay of five sex steroid/neurosteroid-related sulfates in human serum. J Steroid Biochem Mol Biol. 2015;149:1–10. https://doi.org/10.1016/j.jsbmb.2015.01.006.

    Article  CAS  PubMed  Google Scholar 

  38. Alomary AA, Fitzgerald RI, Purdy RH. Neurosteroid analysis. In: International Review of Neurobiology: Elsevier; 2001. p. 97–115.

    Google Scholar 

  39. Leung KS-Y, Fong BM-W. LC–MS/MS in the routine clinical laboratory: has its time come? Anal Bioanal Chem. 2014;406:2289–301. https://doi.org/10.1007/s00216-013-7542-5.

    Article  CAS  PubMed  Google Scholar 

  40. Liere P, Akwa Y, Weill-Engerer S, Eychenne B, Pianos A, Robel P, et al. Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl. 2000;739:301–12. https://doi.org/10.1016/S0378-4347(99)00563-0.

    Article  CAS  PubMed  Google Scholar 

  41. D’aurizio F, Cantù M. Clinical endocrinology and hormones quantitation: the increasing role of mass spectrometry. Minerva Endocrinol. 2018;43(3):261–84. https://doi.org/10.23736/S0391-1977.17.02764-X.

  42. Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Rev. 2001;37:3–12. https://doi.org/10.1016/S0165-0173(01)00109-6.

    Article  CAS  PubMed  Google Scholar 

  43. Crume TL, Shapiro AL, Brinton JT, Glueck DH, Martinez M, Kohn M, et al. Maternal fuels and metabolic measures during pregnancy and neonatal body composition: the healthy start study. J Clin Endocrinol Metab. 2015;100:1672–80. https://doi.org/10.1210/jc.2014-2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klawitter J, Sempio C, Mörlein S, De Bloois E, Klepacki J, Henthorn T, et al. An atmospheric pressure chemical ionization MS/MS assay using online extraction for the analysis of 11 cannabinoids and metabolites in human plasma and urine. Ther Drug Monit. 2017;39:556–64. https://doi.org/10.1097/FTD.0000000000000427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. US Dep Health Hum Serv FDA Cent Drug Eval Res. Bioanalytical Method Validation:  Guidance for Industry; 2018. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf.

  46. CLSI. Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline. CLSI document C62-A. Wayne, PA:  Clin Lab Stand Inst; 2014. 

  47. Hill M, Cibula D, Havlíková H, Kancheva L, Fait T, Kancheva R, et al. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J Steroid Biochem Mol Biol. 2007;105:166–75. https://doi.org/10.1016/j.jsbmb.2006.10.010.

    Article  CAS  PubMed  Google Scholar 

  48. Stroud LR, Solomon C, Shenassa E, Papandonatos G, Niaura R, Lipsitt LP, et al. Long-term stability of maternal prenatal steroid hormones from the National Collaborative Perinatal Project: still valid after all these years. Psychoneuroendocrinology. 2007;32:140–50. https://doi.org/10.1016/j.psyneuen.2006.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holl K, Lundin E, Kaasila M, Grankvist K, Afanasyeva Y, Hallmans G, et al. Effect of long-term storage on hormone measurements in samples from pregnant women: the experience of the Finnish Maternity Cohort. Acta Oncol. 2008;47:406–12. https://doi.org/10.1080/02841860701592400.

    Article  CAS  PubMed  Google Scholar 

  50. Kosicka K, Siemiątkowska A, Krzyścin M, Bręborowicz GH, Resztak M, Majchrzak-Celińska A, et al. Glucocorticoid metabolism in hypertensive disorders of pregnancy: analysis of plasma and urinary cortisol and cortisone. PLoS One. 2015;10:e0144343. https://doi.org/10.1371/journal.pone.0144343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stirrat LI, Walker JJ, Stryjakowska K, Jones N, Homer NZM, Andrew R, et al. Pulsatility of glucocorticoid hormones in pregnancy: changes with gestation and obesity. Clin Endocrinol. 2018;88:592–600. https://doi.org/10.1111/cen.13548.

    Article  CAS  Google Scholar 

  52. Abbassi-Ghanavati M, Greer LG, Cunningham FG. Pregnancy and laboratory studies: a reference table for clinicians. Obstet Gynecol. 2009;114:1326–31. https://doi.org/10.1097/AOG.0b013e3181c2bde8.

    Article  CAS  PubMed  Google Scholar 

  53. Hellgren C, Edvinsson Å, Olivier JD, Fornes R, Stener-Victorin E, Ubhayasekera SJKA, et al. Tandem mass spectrometry determined maternal cortisone to cortisol ratio and psychiatric morbidity during pregnancy−interaction with birth weight. Psychoneuroendocrinology. 2016;69:142–9. https://doi.org/10.1016/j.psyneuen.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  54. Clavijo C, Strom T, Moll V, Betts R, Zhang YL, Christians U, et al. Development and validation of a semi-automated assay for the highly sensitive quantification of Biolimus A9 in human whole blood using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2009;877:3506–14. https://doi.org/10.1016/j.jchromb.2009.08.020.

    Article  CAS  Google Scholar 

  55. Lionetto L, De Andrés F, Capi M, Curto M, Sabato D, Simmaco M, Bossù P, Sacchinelli E, Orfei MD, Piras F, Banaj N, Spalletta G. LC-MS/MS simultaneous analysis of allopregnanolone, epiallopregnanolone, pregnanolone, dehydroepiandrosterone and dehydroepiandrosterone 3-sulfate in human plasma. Bioanalysis. 2017;9(6):527–39. https://doi.org/10.4155/bio-2016-0262.

  56. Deligiannidis KM, Sikoglu EM, Shaffer SA, Frederick B, Svenson AE, Kopoyan A, et al. GABAergic neuroactive steroids and resting-state functional connectivity in postpartum depression: a preliminary study. J Psychiatr Res. 2013;47:816–28. https://doi.org/10.1016/j.jpsychires.2013.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pearson Murphy BE, Allison CM. Determination of progesterone and some of its neuroactive ring A-reduced metabolites in human serum. J Steroid Biochem Mol Biol. 2000;74:137–142. https://doi.org/10.1016/S0960-0760(00)00098-4

  58. Wang M, Seippel L, Purdy RH, Bäckström T. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnanin-20-one. J Clin Endocrinol Metab. 1996;81:1076–82. https://doi.org/10.1210/jcem.81.3.8772579

  59. Hill M, Popov P, Havlikova H, Kancheva L, Vrbikova J, Kancheva R, Pouzar V, Cerny I, Starka L. Altered profiles of serum neuroactive steroids in premenopausal women treated for alcohol addiction. Steroids. 2005;70:515–524. https://doi.org/10.1016/j.steroids.2005.02.013

  60. Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, Shackleton CHL, Storbeck K-H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439. https://doi.org/10.1016/j.jsbmb.2019.105439

Download references

Funding

This study was internally funded by iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Author information

Authors and Affiliations

Authors

Contributions

All authors accept responsibility for the content of this manuscript and approve submission.

Corresponding author

Correspondence to U. Christians.

Ethics declarations

Ethics approval

The Colorado Multiple-institutional Review Board considered this study “exempt” (COMIRB #19-2419).

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayne, G., De Bloois, E., Dabelea, D. et al. Development and validation of an LC-MS/MS assay for the quantification of allopregnanolone and its progesterone-derived isomers, precursors, and cortisol/cortisone in pregnancy. Anal Bioanal Chem 413, 5427–5438 (2021). https://doi.org/10.1007/s00216-021-03523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03523-0

Keywords

Navigation