Skip to main content
Log in

Development and validation of QuEChERS-based extraction for quantification of nine micropollutants in wastewater treatment plant

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was established for simultaneous quantification of eight pharmaceutical molecules (2-hydroxyibuprofen, diclofenac, ibuprofen, propranolol, ofloxacin, oxazepam, sulfamethoxazole, carbamazepine) and caffeine in environmental matrices. Analysis was performed by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS-MS). Quantification was performed by using the 13C internal standard method for each molecule. Two methods were firstly optimized on freeze-dried waste activated sludge and then applied and validated on real complex matrices, which have contrasted physicochemical properties, i.e., clarified wastewater and primary sludge. The combination of acetate buffer with MgSO4 (protocol A) and citrate buffer with Na2SO4 (protocol B) was found necessary to recover the nine targeted compounds. Adding a higher salts quantity of Na2SO4 (protocol B) compared to MgSO4 (protocol A) is crucial to increase the ionic strength of the aqueous solution and to obtain comparable extraction recoveries of the targeted molecules. Adding two times solvent volume to the aqueous phase leads to increased absolute recovery for all molecules and both protocols. After demonstration of the final protocol’s performance on the control matrix, its robustness was tested on the matrices of interest. As a result, the two proposed detection methods exhibit good reproducibility, high sensitivity, and high reliability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonzalez-Gil L, Papa M, Feretti D, Ceretti E, Mazzoleni G, Steimberg N, et al. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Res. 2016;102:211–20. https://doi.org/10.1016/j.watres.2016.06.025.

    Article  CAS  PubMed  Google Scholar 

  2. Guo C, Wang M, Xiao H, Huai B, Wang F, Pan G, et al. Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. J Chromatogr B. 2016;1027:110–8. https://doi.org/10.1016/j.jchromb.2016.05.034.

    Article  CAS  Google Scholar 

  3. Li X, Guo P, Shan Y, Ke Y, Li H, Fu Q, et al. Determination of 82 veterinary drugs in swine waste lagoon sludge by ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2017;1499:57–64. https://doi.org/10.1016/j.chroma.2017.03.055.

    Article  CAS  PubMed  Google Scholar 

  4. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  PubMed  Google Scholar 

  5. Peysson W, Vulliet E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J Chromatogr A. 2013;1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057.

    Article  CAS  PubMed  Google Scholar 

  6. Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD. Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry. J Chromatogr A. 2007;1138:32–41. https://doi.org/10.1016/j.chroma.2006.10.037.

    Article  CAS  PubMed  Google Scholar 

  7. Nie Y, Qiang Z, Zhang H, Adams C. Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography–mass spectrometry. J Chromatogr A. 2009;1216:7071–80. https://doi.org/10.1016/j.chroma.2009.08.064.

    Article  CAS  PubMed  Google Scholar 

  8. Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011;45:1165–76. https://doi.org/10.1016/j.watres.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

  9. Nieto A, Borrull F, Marcé RM, Pocurull E. Determination of personal care products in sewage sludge by pressurized liquid extraction and ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2009;1216:5619–25. https://doi.org/10.1016/j.chroma.2009.05.061.

    Article  CAS  PubMed  Google Scholar 

  10. Okuda T, Yamashita N, Tanaka H, Matsukawa H, Tanabe K. Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environ Int. 2009;35:815–20. https://doi.org/10.1016/j.envint.2009.01.006.

    Article  CAS  PubMed  Google Scholar 

  11. Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ. Determination of various estradiol mimicking-compounds in sewage sludge by the combination of microwave-assisted extraction and LC–MS/MS. Talanta. 2011;85:1825–34. https://doi.org/10.1016/j.talanta.2011.07.051.

    Article  CAS  PubMed  Google Scholar 

  12. Zuloaga O, Navarro P, Bizkarguenaga E, Iparraguirre A, Vallejo A, Olivares M, et al. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review. Anal Chim Acta. 2012;736:7–29. https://doi.org/10.1016/j.aca.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  13. Kupper T, de Alencastro LF, Gatsigazi R, Furrer R, Grandjean D, Tarradellas J. Concentrations and specific loads of brominated flame retardants in sewage sludge. Chemosphere. 2008;71:1173–80. https://doi.org/10.1016/j.chemosphere.2007.10.019.

    Article  CAS  PubMed  Google Scholar 

  14. Moreda JM, Arranz A, Fdez De Betoño S, Cid A, Arranz JF. Chromatographic determination of aliphatic hydrocarbons and polyaromatic hydrocarbons (PAHs) in a sewage sludge. Sci Total Environ. 1998;220:33–43. https://doi.org/10.1016/S0048-9697(98)00238-1.

    Article  CAS  Google Scholar 

  15. Díaz-Cruz MS, Barceló D. Highly selective sample preparation and gas chromatographic–mass spectrometric analysis of chlorpyrifos, diazinon and their major metabolites in sludge and sludge-fertilized agricultural soils. J Chromatogr A. 2006;1132:21–7. https://doi.org/10.1016/j.chroma.2006.07.062.

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Brunete C, Miguel E, Tadeo JL. Determination of organochlorine pesticides in sewage sludge by matrix solid-phase dispersion and gas chromatography–mass spectrometry. Talanta. 2008;74:1211–7. https://doi.org/10.1016/j.talanta.2007.08.025.

    Article  CAS  PubMed  Google Scholar 

  17. Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol. 2005;39:3421–9. https://doi.org/10.1021/es048143z.

    Article  CAS  PubMed  Google Scholar 

  18. Yu Y, Huang Q, Cui J, Zhang K, Tang C, Peng X. Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2011;399:891–902. https://doi.org/10.1007/s00216-010-4295-2.

    Article  CAS  PubMed  Google Scholar 

  19. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. AOAC Int. 2003;86:412–31.

    Article  CAS  Google Scholar 

  20. Zhang C, Deng Y, Zheng J, Zhang Y, Yang L, Liao C, et al. The application of the QuEChERS methodology in the determination of antibiotics in food: a review. TrAC Trends Anal Chem. 2019;118:517–37. https://doi.org/10.1016/j.trac.2019.06.012.

    Article  CAS  Google Scholar 

  21. Rejczak T, Tuzimski T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015;13. https://doi.org/10.1515/chem-2015-0109.

  22. González-Curbelo MÁ, Socas-Rodríguez B, Herrera-Herrera AV, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MÁ. Evolution and applications of the QuEChERS method. TrAC Trends Anal Chem. 2015;71:169–85. https://doi.org/10.1016/j.trac.2015.04.012.

    Article  CAS  Google Scholar 

  23. Łozowicka B, Rutkowska E, Jankowska M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ Sci Pollut Res Int. 2017;24:7124–38. https://doi.org/10.1007/s11356-016-8334-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cavaillé L, Albasi C, Joaniss-Cassan C, Etcheverry L, Paul E, Bessiere Y, et al. SMS: improvement of micropollutants treatment and nutrient recovery by source separation of urine, Vienne (Autriche): 2017.

  25. sivomsaudrune1#personnel-admin_atd. Projet SMS 2018. https://www.sivom-sag.fr/fr/projets/sms.html (accessed April 12, 2021).

  26. Gonzalez-Salgado I, Cavaillé L, Dubos S, Mengelle E, Kim C, Bounouba M, et al. Combining thermophilic aerobic reactor (TAR) with mesophilic anaerobic digestion (MAD) improves the degradation of pharmaceutical compounds. Water Res. 2020;182:116033. https://doi.org/10.1016/j.watres.2020.116033.

    Article  CAS  PubMed  Google Scholar 

  27. Munch MD. U.S. Environmental Protection Agency Office of Ground Water and Drinking Water. EPA Doc 915-R05–006 2004.

  28. Wenzyl T, Haedrich J, Schaechtele A, Robouch P, Stroka J. Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food. Publ Off Eur Union Luxembg 2016.

  29. Ross DL, Riley CM. Physicochemical properties of the fluoroquinolone antimicrobials V. effect of fluoroquinolone structure and pH on the complexation of various fluoroquinolones with magnesium and calcium ions. Int J Pharm. 1993;93:121–9. https://doi.org/10.1016/0378-5173(93)90170-K.

    Article  CAS  Google Scholar 

  30. Rizzetti TM, Kemmerich M, Martins ML, Prestes OD, Adaime MB, Zanella R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC–MS/MS. Food Chem. 2016;196:25–33. https://doi.org/10.1016/j.foodchem.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  31. Malvar JL, Santos JL, Martín J, Aparicio I, Alonso E. Comparison of ultrasound-assisted extraction, QuEChERS and selective pressurized liquid extraction for the determination of metabolites of parabens and pharmaceuticals in sludge. Microchem J. 2020;157:104987. https://doi.org/10.1016/j.microc.2020.104987.

    Article  CAS  Google Scholar 

  32. Pérez-Lemus N, López-Serna R, Pérez-Elvira SI, Barrado E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: a critical review. Anal Chim Acta. 2019;1083:19–40. https://doi.org/10.1016/j.aca.2019.06.044.

    Article  CAS  PubMed  Google Scholar 

  33. Gago-Ferrero P, Borova V, Dasenaki ME, Τhomaidis ΝS. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407:4287–97. https://doi.org/10.1007/s00216-015-8540-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bessiere.

Ethics declarations

The authors attest that there is no conflict of interest. This work is part of the SMS project “Micropollutant source separation for health risks control and preservation of the environment” funded by the Adour-Garonne Water Agency and the French Agency for Biodiversity.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaillé, L., Kim, C., Bounouba, M. et al. Development and validation of QuEChERS-based extraction for quantification of nine micropollutants in wastewater treatment plant. Anal Bioanal Chem 413, 5201–5213 (2021). https://doi.org/10.1007/s00216-021-03489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03489-z

Keywords

Navigation