CLSI. Body fluid analysis for cellular composition; approved guidelines. CLSI document H56-A.Wayne. Clinical and Laboratory Standard Institute: PA; 2006.
Google Scholar
Sandhaus LM. Is the hemocytometer obsolete for body fluid cell counting? Am J Clin Path. 2016;145(3):294–5.
Article
Google Scholar
Martín MJA, Queral LA, Frías LS, Amado LV, Merino A, de Guadiana-Romualdo LG. Automated cell count in body fluids: a review. Adv Lab Med. 2021;20210011.
Buoro S, Peruzzi B, Fanelli A, Seghezzi M, Manenti B, Lorubbio M, et al. Two-site evaluation of the diagnostic performance of the Sysmex XN Body Fluid (BF) module for cell count and differential in cerebrospinal fluid. Int J Lab Hematol. 2018;40(1):26–33.
CAS
Article
Google Scholar
Buoro S, Seghezzi M, Dominoni P, Moioli V, Manenti B, Previtali G, et al. Lack of harmonization in high fluorescent cell automated counts with body fluids mode in ascitic, pleural, synovial, and cerebrospinal fluids. Int J Lab Hematol. 2019;41(2):277–86.
Article
Google Scholar
Seo JY, Lee S-T, Kim S-H. Performance evaluation of the new hematology analyzer Sysmex XN-series. Int J Lab Hematol. 2015;37(2):155–64.
CAS
Article
Google Scholar
Huang W-H, Lu L-P, Wu K, Guo F-Y, Guo J, Yu J-L, et al. Extent of agreement between the body fluid model of Sysmex XN-20 and the manual microscopy method. J Clin Lab Anal. 2017;31(5):e22101.
Article
Google Scholar
Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.
CAS
Article
Google Scholar
Smith ZJ, Gao T, Chu K, Lane SM, Matthews DL, Dwyre DM, et al. Single-step preparation and image-based counting of minute volumes of human blood. Lab Chip. 2014;14(16):3029–36.
CAS
Article
Google Scholar
Forcucci A, Pawlowski ME, Majors C, Richards-Kortum R, Tkaczyk TS. All-plastic, miniature, digital fluorescence microscope for three part white blood cell differential measurements at the point of care. Biomed Opt Express. 2015;6(11):4433–46.
Article
Google Scholar
Powless A, Feekin L, Hutcheson J, Alapat D, Muldoon T. Low-cost computing and network communication for a point-of-care device to perform a 3-part leukocyte differential. Proc. SPIE 9715; 2016.
Xie D, Xie Y, Liu P, Tong L, Hu C, Shao P, et al. Performance of a cost-effective and automated blood counting system for resource-limited settings operated by trained and untrained users. J Biophotonics. 2018;11(2):e201700030.
Article
Google Scholar
Li X, Deng Q, Liu H, Lei Y, Fan P, Wang B, et al. A smart preparation strategy for point-of-care cellular counting of trace volumes of human blood. Anal Bioanal Chem. 2019;411(13):2767–80.
CAS
Article
Google Scholar
Lv M, Zhao X, Chen F, Yu M, Li C, Sun J. A rapid white blood cell classification system based on multimode imaging technology. J Biophotonics. 2020;13(11):e202000197.
CAS
Article
Google Scholar
Chen Y, Chen X, Li M, Fan P, Wang B, Zhao S, et al. A new analytical platform for potential point-of-care testing of circulating tumor cells. Biosens Bioelectron. 2021;171:112718.
CAS
Article
Google Scholar
Bachar N, Benbassat D, Brailovsky D, Eshel Y, Glück D, Levner D, et al. An artificial intelligence-assisted diagnostic platform for rapid near-patient hematology. medRxiv; 2021.
Chen X, Luo P, Hu C, Yan S, Lu D, Li Y, et al. Nanometer precise red blood cell sizing using a cost-effective quantitative dark field imaging system. Biomed Opt Express. 2020;11(10):5950–66.
CAS
Article
Google Scholar
Li Y, Zheng R, Wu Y, Chu K, Xu Q, Sun M, et al. A low-cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning. J Biophotonics. 2019;12(9):e201800410.
PubMed
Google Scholar
Gao T, Smith ZJ, Lin T-Y, Carrade Holt D, Lane SM, Matthews DL, et al. Smart and fast blood counting of trace volumes of body fluids from various mammalian species using a compact, custom-built microscope cytometer. Anal Chem. 2015;87(23):11854–62.
CAS
Article
Google Scholar
Powless AJ, Prieto SP, Gramling MR, Conley RJ, Holley GG, Muldoon TJ. Evaluation of acridine orange staining for a semi-automated urinalysis microscopic examination at the point-of-care. Diagnostics. 2019;9(3).
Campbell RA, Eifert RW, Turner GC. OpenStage: a low-cost motorized microscope stage with sub-micron positioning accuracy. PLoS One. 2014;9(2):e88977.
Article
Google Scholar
Lu Q, Liu G, Xiao C, Hu C, Zhang S, Xu RX, et al. A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings. PLoS One. 2018;13(3):e0194063.
Article
Google Scholar
Yan Z, Chen G, Xu W, Yang C, Lu Y. Study of an image autofocus method based on power threshold function wavelet reconstruction and a quality evaluation algorithm. Appl Opt. 2018;57(33):9714–21.
Article
Google Scholar
Kim YR, Ornstein L. Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry. Cytometry. 1983;3(6):419–27.
CAS
Article
Google Scholar
Traganos F, Darzynkiewicz Z, Sharpless T, Melamed MR. Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J Histochem Cytochem. 1977;25(1):46–56.
CAS
Article
Google Scholar
Chen Z, Wang Y, Zeng A, Chen L, Wu R, Chen B, et al. The clinical diagnostic significance of cerebrospinal fluid d-lactate for bacterial meningitis. Clin Chim Acta. 2012;413(19):1512–5.
CAS
Article
Google Scholar
Veerman A, Huismans L, Zantwijk I. Storage of cerebrospinal fluid samples at room temperature. Acta Cytol. 1985;29:188–9.
CAS
PubMed
Google Scholar
Powless A, Conley R, Freeman K, Muldoon T. Considerations for point-of-care diagnostics: evaluation of acridine orange staining and postprocessing methods for a three-part leukocyte differential test. J Biomed Opt. 2017;22(3):035001.
Article
Google Scholar
de Jonge R, Brouwer R, de Graaf MT, Luitwieler RL, Fleming C, de Frankrijker-Merkestijn M, et al. Evaluation of the new body fluid mode on the Sysmex XE-5000 for counting leukocytes and erythrocytes in cerebrospinal fluid and other body fluids. Clin Chem Lab Med. 2010;48(5):665–75.
Article
Google Scholar