Skip to main content

Advertisement

Log in

Design and characterization of high-affinity synthetic peptides as bioreceptors for diagnosis of cutaneous leishmaniasis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cutaneous leishmaniasis (CL) is one of the illnesses caused by Leishmania parasite infection, which can be asymptomatic or severe according to the infecting Leishmania strain. CL is commonly diagnosed by directly detecting the parasites or their DNA in tissue samples. New diagnostic methodologies target specific proteins (biomarkers) secreted by the parasite during the infection process. However, specific bioreceptors for the in vivo or in vitro detection of these novel biomarkers are rather limited in terms of sensitivity and specificity. For this reason, we here introduce three novel peptides as bioreceptors for the highly sensitive and selective identification of acid phosphatase (sAP) and proteophosphoglycan (PPG), which have a crucial role in leishmaniasis infection. These high-affinity peptides have been designed from the conservative domains of the lectin family, holding the ability to interact with the biological target and produce the same effect than the original protein. The synthetic peptides have been characterized and the affinity and kinetic constants for their interaction with the targets (sAP and PPG) have been determined by a surface plasmon resonance biosensor. Values obtained for KD are in the nanomolar range, which is comparable to high-affinity antibodies, with the additional advantage of a high biochemical stability and simpler production. Pep2854 exhibited a high affinity for sAP (KD = 1.48 nM) while Pep2856 had a good affinity for PPG (KD 1.76 nM). This study evidences that these peptidomimetics represent a novel alternative tool to the use of high molecular weight proteins for biorecognition in the diagnostic test and biosensor devices for CL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ejov M, Dagne D. Strategic framework for leishmaniasis control in the WHO European Region 2014–2020.; 2014.

  2. Melkamu HT, Beyene AM, Zegeye DT. Knowledge, attitude and practices of the resident community about visceral leishmaniasis in West Armachiho district, Northwest Ethiopia. Heliyon. 2020;6(1):e03152. https://doi.org/10.1016/j.heliyon.2019.e03152.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5). https://doi.org/10.1371/journal.pone.0035671.

  4. Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581–92. https://doi.org/10.1038/nri.2016.72.

    Article  CAS  PubMed  Google Scholar 

  5. Crone CG, Helleberg M. Cutaneous leishmaniasis with secondary mucosal disease in a traveller due to Leishmania (Viannia) braziliensis. J Travel Med. 2020;27(1):1–4. https://doi.org/10.1093/jtm/taz093.

    Article  Google Scholar 

  6. Elmahallawy EK, Sampedro Martínez A, Rodriguez-Granger J, et al. Diagnosis of leishmaniasis. J Infect Dev Ctries. 2014;8(8):961–72. https://doi.org/10.3855/jidc.4310.

    Article  PubMed  Google Scholar 

  7. Singh G, Pritam M, Banerjee M, Singh AK, Singh SP. Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: a contemporary approach. Comput Biol Chem. 2020;86(December 2019):107259. https://doi.org/10.1016/j.compbiolchem.2020.107259.

    Article  CAS  PubMed  Google Scholar 

  8. Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries. 2015;9(6):588–96. https://doi.org/10.3855/jidc.6833.

    Article  CAS  PubMed  Google Scholar 

  9. Can H, Döşkaya M, Özdemir HG, et al. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of I˙zmir, Turkey. Exp Parasitol. 2016;167:109–14. https://doi.org/10.1016/j.exppara.2016.05.011.

    Article  PubMed  Google Scholar 

  10. Soler M, Huertas CS, Lechuga LM. Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Rev Mol Diagn. 2019;19(1):71–81. https://doi.org/10.1080/14737159.2019.1554435.

    Article  CAS  PubMed  Google Scholar 

  11. Ashrafmansouri MA, Sarkari B, Hatam G, Habibi P, Abdolahi Khabisi S. Utility of western blot analysis for the diagnosis of cutaneous leishmaniasis. Iran J Parasitol. 2015;10(4):599–604.

    PubMed  PubMed Central  Google Scholar 

  12. de Paiva-Cavalcanti M, de Morais RCS, Pessoa-e-Silva R, et al. Leishmaniases diagnosis: an update on the use of immunological and molecular tools. Cell Biosci. 2015;5(1):1–10. https://doi.org/10.1186/s13578-015-0021-2.

    Article  CAS  Google Scholar 

  13. Romero GAS, Orge MDLGO, Guerra MVDF, Paes MG, Macêdo VDO, De Carvalho EM. Antibody response in patients with cutaneous leishmaniasis infected by Leishmania (Viannia) braziliensis or Leishmania (Viannia) guyanensis in Brazil. Acta Trop. 2005;93(1):49–56. https://doi.org/10.1016/j.actatropica.2004.09.005.

    Article  PubMed  Google Scholar 

  14. Soulat D, Bogdan C. Function of macrophage and parasite phosphatases in leishmaniasis. Front Immunol. 2017;8(DEC):1–21. https://doi.org/10.3389/fimmu.2017.01838.

    Article  CAS  Google Scholar 

  15. Reiter-Owona I, Rehkaemper-Schaefer C, Arriens S, Rosenstock P, Pfarr K, Hoerauf A. Specific K39 antibody response and its persistence after treatment in patients with imported leishmaniasis. Parasitol Res. 2016;115(2):761–9. https://doi.org/10.1007/s00436-015-4801-8.

    Article  PubMed  Google Scholar 

  16. Herrera G, Castillo A, Ayala MS, Flórez C, Cantillo-Barraza O, Ramirez JD. Evaluation of four rapid diagnostic tests for canine and human visceral Leishmaniasis in Colombia. BMC Infect Dis. 2019;19(1):1–9. https://doi.org/10.1186/s12879-019-4353-0.

    Article  CAS  Google Scholar 

  17. Ibarra-Meneses AV, Moreno J, Carrillo E. New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol. 2020;36(1):29–38. https://doi.org/10.1016/j.pt.2019.10.005.

    Article  PubMed  Google Scholar 

  18. Kip AE, Balasegaram M, Beijnen JH, Schellens JHM, De Vries PJ, Dorloa TPC. Systematic review of biomarkers to monitor therapeutic response in leishmaniasis. Antimicrob Agents Chemother. 2015;59(1):1–14. https://doi.org/10.1128/AAC.04298-14.

    Article  CAS  PubMed  Google Scholar 

  19. Bahrami F, Harandi AM, Rafati S. Biomarkers of cutaneous leishmaniasis. Front Cell Infect Microbiol. 2018;8(JUN):1–8. https://doi.org/10.3389/fcimb.2018.00222.

    Article  CAS  Google Scholar 

  20. Esteves S, Costa I, Amorim C, Nuno Santarem AC-S. Biomarker indicator of abnormal physicological process. Biomarkers in leishmaniasis: from basic research to clinical application. 2018:195–224. https://doi.org/10.1016/j.colsurfa.2011.12.014.

  21. Pinedo-Cancino V, Laurenti MD, Kesper N, Umezawa ES. Evaluation of Leishmania (Leishmania) infantum excreted-secreted antigens for detection of canine leishmaniasis. Acta Trop. 2016;161:41–3. https://doi.org/10.1016/j.actatropica.2016.05.0100.

    Article  CAS  PubMed  Google Scholar 

  22. Ejazi SA, Bhattacharyya A, Choudhury ST, et al. Immunoproteomic identification and characterization of Leishmania membrane proteins as non-invasive diagnostic candidates for clinical visceral leishmaniasis. Sci Rep. 2018;8(1):1–11. https://doi.org/10.1038/s41598-018-30546-y.

    Article  CAS  Google Scholar 

  23. Tham M, Ramasamy S, Gan HT, et al. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One. 2010;5(12). https://doi.org/10.1371/journal.pone.0015341.

  24. Pelletier I, Hashidate T, Urashima T, et al. Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem. 2003;278(25):22223–30. https://doi.org/10.1074/jbc.M302693200.

    Article  CAS  PubMed  Google Scholar 

  25. Padilla-Docal B, Dorta-Contreras A, Bu-Coifiu R, Callol-Barroso J. Rol de la lectina de unión a manosa en infecciones parasitarias. Rev Panam Infecto. 2009;11(3):45–8.

    Google Scholar 

  26. Pustylnikov S, Sagar D, Jain P, Khan ZK. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J Pharm Pharm Sci a Publ Can Soc Pharm Sci Soci??t?? Can des Sci Pharm. 2014;17(3):371–92.

    Google Scholar 

  27. Blaszczyk M, Kurcinski M, Kouza M, et al. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods. 2016;93:72–83. https://doi.org/10.1016/j.ymeth.2015.07.004.

    Article  CAS  PubMed  Google Scholar 

  28. Sparks RP, Jenkins JL, Fratti R. Use of surface plasmon resonance (SPR) to determine binding affinities and kinetic parameters between components important in fusion machinery. Methods Mol Biol. 1860;2019:199–210. https://doi.org/10.1007/978-1-4939-8760-3_12.

    Article  CAS  Google Scholar 

  29. Kurcinski M, Pawel Ciemny M, Oleniecki T, Kuriata A, Badaczewska-Dawid AE, Kolinski A, et al. CABS-dock standalone: a toolbox for flexible protein-peptide docking. Bioinformatics. 2019;35:4170–2. https://doi.org/10.1093/bioinformatics/btz185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho BK, Dill KA. Folding very short peptides using molecular dynamics. PLoS Comput Biol. 2006;2(4):228–37. https://doi.org/10.1371/journal.pcbi.0020027.

    Article  CAS  Google Scholar 

  31. Hua C, Hui X, Zhu L, Chang S, Zu W, Xin C. Complex-type-dependent scoring functions in protein – protein docking 2007;129:1–10. doi:https://doi.org/10.1016/j.bpc.2007.04.014.

  32. Watkins AM, Bonneau R, Arora PS. Highly flexible protein-peptide docking using CABS-Dock. Methods Mol Biol. 2017;1561:109–38. https://doi.org/10.1007/978-1-4939-6798-8.

    Article  Google Scholar 

  33. Sargsyan K, Grauffel C, Lim C. How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput. 2017;13(4):1518–24. https://doi.org/10.1021/acs.jctc.7b00028.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Wu H, Hong J, Xu X, Yang H, Wu B, et al. Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PLoS One. 2008;3(6):1–10. https://doi.org/10.1371/journal.pone.0002381.

    Article  CAS  Google Scholar 

  35. Arnaud J, Audfray A, Imberty A. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev. 2013;42(11):4798–813. https://doi.org/10.1039/c2cs35435g.

    Article  CAS  PubMed  Google Scholar 

  36. Yap BK, Leung EWW, Yagi H, et al. A potent cyclic peptide targeting SPSB2 protein as a potential anti-infective agent. J Med Chem. 2014;57(16):7006–15. https://doi.org/10.1021/jm500596j.

    Article  CAS  PubMed  Google Scholar 

  37. Monfregola L, Vitale RM, Amodeo P, De Luca S. A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor. Bioorg Med Chem. 2009;17(19):7015–20. https://doi.org/10.1016/j.bmc.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Zhang X, Xie Y, Wu A, Zai X, Liu X. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. Int J Biol Macromol. 2019;137:562–7. https://doi.org/10.1016/j.ijbiomac.2019.06.164.

    Article  CAS  PubMed  Google Scholar 

  39. Diehnelt CW, Shah M, Gupta N, Belcher PE, Greving MP, Stafford P, et al. Discovery of high-affinity protein binding ligands - backwards. PLoS One. 2010;5. https://doi.org/10.1371/journal.pone.0010728.

  40. Xiao W, Ma W, Wei S, Li Q, Liu R, Carney RP, et al. High-affinity peptide ligand LXY30 for targeting α3β1 integrin in non-small cell lung cancer. J Hematol Oncol. 2019;12:1–18. https://doi.org/10.1186/s13045-019-0764-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Patricia Escobar from CINTROP for helpful discussion about Leishmania parasite.

Funding

This study was supported by a Doctoral Fellowship from COLCIENCIAS in Colombia. The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from Spanish Ministry of Science MICINN (Grant No. SEV-2017-0706). This work has made use of the Biodeposition and Biodetection Unit from ICTS NANBIOSIS (http://www.nanbiosis.es/portfolio/u4-biodeposition-andbiodetection-unit/) partially supported by MICINN/FEDER (FICTS-1420-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Castillo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prada, Y.A., Soler, M., Guzmán, F. et al. Design and characterization of high-affinity synthetic peptides as bioreceptors for diagnosis of cutaneous leishmaniasis. Anal Bioanal Chem 413, 4545–4555 (2021). https://doi.org/10.1007/s00216-021-03424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03424-2

Keywords