Skip to main content
Log in

MnO2-graphene oxide hybrid nanomaterial with oxidase-like activity for ultrasensitive colorimetric detection of cancer cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Robust and sensitive cell-based enzyme-linked immunosorbent assay (CELISA) is of great significance in the diagnosis and screening of cancer. However, the method is limited by the high rate of negative results attributed to the instability of horseradish peroxidase (HRP), H2O2, and antibody. Here, we construct a folic acid–functionalized in situ-grown MnO2 nanosheet/graphene oxide hybrid (FA-MnO2/GO) with oxidase-like activity instead of the anti-folate receptor antibody in traditional CELISA to resist the possible negative interference arising from unstable HRP, H2O2, and antibodies for more robust colorimetric detection of cancer cells. The functionalization of FA enables the selective binding between hybrid and cancer cells through the over-expressed folate receptor, and then the binding events are converted into quantitative colorimetric signals though the oxidation of the chromogenic substrate TMB catalyzed by MnO2, allowing the detection of cancer cells with colorimetric method. Moreover, the construction of MnO2/GO hybrid can synergistically enhance the oxidase-like activity of MnO2 and promote its dispersion in water, further ensuring the accuracy and sensitivity of the detection. A detection limit of 20 cancer cells is obtained by a plate reader, which is lower than those obtained by most reported CELISA methods for cancer cell detection, and as few as 75 cancer cells can be identified by the naked eye. This study not only provides a multifunctional sensing platform for robust and sensitive cancer cell detection, but also offers a promising oxidase-like mimic in the field of bioanalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verdin A, Malherbe C, Muller WH, Bertrand V, Eppe G. Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes. Anal Bioanal Chem. 2020;412:7739–55.

    Article  CAS  Google Scholar 

  2. Paredes KO, Diaz-Garcia D, Garcia-Almodovar V, Chamizo LL, Marciello M, Diaz-Sanchez M, et al. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers. 2020;12:187.

    Article  CAS  Google Scholar 

  3. Soleymani J, Hasanzadeh M, Shadjou N, Somi MH, Jouyban A. Spectrofluorimetric cytosensing of colorectal cancer cells using terbium-doped dendritic fibrous nano-silica functionalized by folic acid: a novel optical cytosensor for cancer detection. J Pharm Biomed Anal. 2020;180:113077.

    Article  CAS  Google Scholar 

  4. Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry. 2021;137:107685.

    Article  CAS  Google Scholar 

  5. Guo JW, Zhao X, Hu J, Lin Y, Wang Q. Tobacco mosaic virus with peroxidase-like activity for cancer cell detection through colorimetric assay. Mol Pharm. 2018;15:2946–53.

    Article  CAS  Google Scholar 

  6. Chen CH, Liu YF, Zheng ZH, Zhou GH, Ji XH, Wang HZ, et al. A new colorimetric platform for ultrasensitive detection of protein and cancer cells based on the assembly of nucleic acids and proteins. Anal Chim Acta. 2015;880:1–7.

    Article  CAS  Google Scholar 

  7. Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48:2308–12.

    Article  CAS  Google Scholar 

  8. Wan Y, Qi P, Zhang D, Wu JJ, Wang Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron. 2012;33:69–74.

    Article  CAS  Google Scholar 

  9. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article  CAS  Google Scholar 

  10. Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2013;85:308–12.

    Article  CAS  Google Scholar 

  11. Chen F, Bai M, Cao K, Zhao Y, Wei J, Zhao YX. Fabricating MnO2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells. Adv Funct Mater. 2017;27:1702748.

    Article  Google Scholar 

  12. Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, et al. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano. 2010;4:7451–8.

    Article  CAS  Google Scholar 

  13. Li K, Wang K, Qin WW, Deng SH, Li D, Shi JY, et al. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J Am Chem Soc. 2015;137:4292–5.

    Article  CAS  Google Scholar 

  14. Zhao AS, She J, Manoj D, Wang TQ, Sun YM, Zhang Y, et al. Functionalized graphene fiber modified by dual nanoenzyme: towards high-performance flexible nanohybrid microelectrode for electrochemical sensing in live cancer cells. Sensors Actuators B Chem. 2020;310:127861.

    Article  CAS  Google Scholar 

  15. Sun PP, Hai J, Sun SH, Lu SY, Liu S, Liu HW, et al. Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale. 2020;12:825–31.

    Article  CAS  Google Scholar 

  16. Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412.

    Article  CAS  Google Scholar 

  17. Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 2018;105:218–24.

    Article  CAS  Google Scholar 

  18. Yu ZZ, Lou RX, Pan W, Li N, Tang B. Nanoenzymes in disease diagnosis and therapy. Chem Commun. 2020;56:15513–24.

    Article  CAS  Google Scholar 

  19. Zhang LN, Deng HH, Lin FL, Xu XW, Weng SH, Liu AL, et al. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem. 2014;86:2711–8.

    Article  CAS  Google Scholar 

  20. Guo QJ, Pan ZY, Men C, Lv WY, Zou HY, Huang CZ. Visual detection of cancer cells by using in situ grown functional Cu2-xSe/reduced graphene oxide hybrids acting as an efficient nanozyme. Analyst. 2019;144:716–21.

    Article  CAS  Google Scholar 

  21. Kumar ASK, Lu CY, Tseng WL. Two in one: poly(ethyleneimine)-modified MnO2 nanosheets for ultrasensitive detection and catalytic reduction of 2,4,6-trinitrotoluene and other nitro aromatics. ACS Sustain Chem Eng. 2021;9:1142–51.

    Article  Google Scholar 

  22. Yang RJ, Fan YY, Ye RQ, Tang YX, Cao XH, Yin ZY, et al. MnO2-based materials for environmental applications. Adv Mater. 2021;33:2004862.

    Article  CAS  Google Scholar 

  23. Xiao T, Wang S, Yan MX, Huang JS, Yang XR. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO2 nanosheets. Talanta. 2021;221:121362.

    Article  CAS  Google Scholar 

  24. Tao Y, Lin YH, Huang ZZ, Ren JS, Qu XG. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater. 2013;25:2594–9.

    Article  CAS  Google Scholar 

  25. Rani BJ, Gowsalya M, Ravi G, Yuvakkumar R, Hong SI. Highly dispersed SmMn2O5 nanorods for electrochemical water oxidation reaction kinetics. Mater Res Express. 2019;6:095090.

    Article  CAS  Google Scholar 

  26. de Sousa M, de Luna LAV, Fonseca LC, Giorgio S, Alves OL. Folic-acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Appl Nano Mater. 2018;1:922–32.

    Article  Google Scholar 

  27. Wang PX, Cheng HJ, Ding J, Ma J, Jiang J, Huang ZS, et al. Cadmium removal with thiosulfate/permanganate (TS/Mn(VII)) system: MnO2 adsorption and/or CdS formation. Chem Eng J. 2020;380:122585.

    Article  CAS  Google Scholar 

  28. Huang Y, Ge J, Chen H, Wang Z, Han J, Xie G, et al. Dual-signal readout aptasensor for electrochemical and colorimetric assay using a bifunctional Ni-Fe PBA probe. Sensors Actuators B Chem. 2021;327:128871.

    Article  CAS  Google Scholar 

  29. Zhang X, Yang Q, Lang YH, Jiang X, Wu P. Rationale of 3,3′,5,5′-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal Chem. 2020;92:12400–6.

    Article  CAS  Google Scholar 

  30. Wu N, Wang YT, Wang XY, Guo FN, Wen H, Yang T, et al. Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Anal Chim Acta. 2019;1091:69–75.

    Article  CAS  Google Scholar 

  31. Guo YJ, Deng L, Li J, Guo SJ, Wang EK, Dong SJ. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano. 2011;5:1282–90.

    Article  CAS  Google Scholar 

  32. Sousa SF, Calixto AR, Ferreira P, Ramos MJ, Lim C, Fernandes PA. Activation free energy, substrate binding free energy, and enzyme efficiency fall in a very narrow range of values for most enzymes. ACS Catal. 2020;10:8444–53.

    Article  CAS  Google Scholar 

  33. Teng Y, Shi J, Pong PWT. Sensitive and specific colorimetric detection of cancer cells based on folate-conjugated gold-iron-oxide composite nanoparticles. ACS Appl. Nano Mater. 2019;2:7421–31.

    Article  CAS  Google Scholar 

  34. Wang GL, Xu XF, Qiu L, Dong YM, Li ZJ, Zhang C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl Mater Interfaces. 2014;6:6434–42.

    Article  CAS  Google Scholar 

  35. Ding EL, Hai J, Chen FJ, Wang BD. Constructing 2D nanosheet-assembled MnCo2O4 nanotubes for pressure and colorimetric dual-signal readout detection of cancer cells in serum samples. ACS Appl Nano Mater. 2018;1:4156–63.

    Article  CAS  Google Scholar 

  36. Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao YL. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces. 2015;7:9807–16.

    Article  CAS  Google Scholar 

  37. Liu GD, Mao X, Phillips JA, Xu H, Tan WH, Zeng LW. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem. 2009;81:10013–8.

    Article  CAS  Google Scholar 

  38. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan WH. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem. 2008;80:1067–72.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (21922402, 21874017, and 21727811), Liaoning Provincial Program for Promoting Talents (XLYC1807005 and XLYC1802016), and the Fundamental Research Funds for the Central Universities (N2005027).

Author information

Authors and Affiliations

Authors

Contributions

Meng-Xian Liu and He Zhang: Literature research, scheme design, data collection and processing, and original draft writing. Shuai Chen, Yong-Liang Yu, and Jian-Hua Wang: Scheme design, supervision, original draft writing, reviewing, and editing. All individuals who made contributions to this study are included as authors in this paper.

Corresponding authors

Correspondence to Shuai Chen or Yong-Liang Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 125 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MX., Zhang, H., Chen, S. et al. MnO2-graphene oxide hybrid nanomaterial with oxidase-like activity for ultrasensitive colorimetric detection of cancer cells. Anal Bioanal Chem 413, 4451–4458 (2021). https://doi.org/10.1007/s00216-021-03399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03399-0

Keywords

Navigation