Skip to main content

Advertisement

Log in

Ratiometric fluorescence nanoplatform integrated with smartphone as readout device for sensing trace water

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In our investigation, a smartphone-integrated ratiometric fluorescent sensing system with lanthanide-based infinite coordination polymers (Ce-GMP-DPA@Tb-DPA) as signal probe has been successfully constructed for sensitive and portable detection of water in organic solvents. The Ce-GMP-DPA presents blue luminescence which is suppressed once the Tb-DPA is integrated to form the complex of Ce-GMP-DPA@Tb-DPA. Due to the energy transfer from Ce to Tb, the as-formed Ce-GMP-DPA@Tb-DPA exhibits green fluorescence of Tb-DPA. The presence of water can decompose the Tb-DPA, which blocks energy transfer from Ce to Tb, resulting in the decrease of green emission of Tb-DPA and the recovery of blue emission of Ce-GMP-DPA. Therefore, a ratiometric fluorescence assay is established for quantitative water detection within a wide linear range from 0.2 to 90.0% in ethanol. The limit of detection (LOD) reaches as low as 0.16% in ethanol, 0.62% in THF, and 0.0076% in acetonitrile, respectively. Furthermore, a smartphone installed with Color Picker APP as signal reader and analyzer is designed to integrate with the detection assay. With white spirit as real sample, water can be on-site detected with high accuracy (RSD < 2.81%). The developed platform presents great potential for portable water detection in practical application with merits of low cost, easy carry, and simple operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim WY, Shi H, Jung HS, Cho D, Verwilst P, Jin LY, et al. Coumarin-decorated schiff base hydrolysis as an efficient driving force for the fluorescence detection of water in organic solvents. Chem Commun. 2016;52:8675–8.

    Article  CAS  Google Scholar 

  2. Kim TI, Kim Y. A water indicator strip: instantaneous fluorogenic detection of water in organic solvents, drugs, and foodstuffs. Anal Chem. 2017;89:3768–72.

    Article  CAS  Google Scholar 

  3. Wang XY, Niu CG, Hu LY, Huang DW, Wu SQ, Zhang L, et al. A fluorescent ratiometric sensor based on covalent immobilization of chalcone derivative and porphyrin zinc for detecting water content in organic solvents. Sensors Actuators B Chem. 2017;243:1046–56.

    Article  CAS  Google Scholar 

  4. Biradha K, Ramanan A, Vittal JJ. Coordination polymers versus metal-organic frameworks. Cryst Growth Des. 2009;9:2969–70.

    Article  CAS  Google Scholar 

  5. Zhou Y, Zhang D, Xing W, Cuan J, Hu Y, Cao Y, et al. Ratiometric and turn-on luminescence detection of water in organic solvents using a responsive europium-organic framework. Anal Chem. 2019;91:4845–51.

    Article  CAS  Google Scholar 

  6. Gamby J, Pailleret A, Clodic CB, Pradier CM, Tribollet B. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods. Electrochim Acta. 2008;54:66–73.

    Article  CAS  Google Scholar 

  7. Jung HS, Verwilst P, Kim WY, Kim JS. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev. 2016;45:1242–56.

    Article  CAS  Google Scholar 

  8. Wang J, Wang J, Xiao W. Lignin-derived red-emitting carbon dots for colorimetric and sensitive fluorometric detection of water in organic solvents. Anal Methods. 2020;12:3218–24.

    Article  CAS  Google Scholar 

  9. Men G, Chen C, Liang C. A novel cascade strategy with supramolecular and chemodosimetric methods for designing a fluorescent ratiometric detector hypersensitive to trace water. Analyst. 2015;140:5454–8.

    Article  CAS  Google Scholar 

  10. Che L, Ye JW, Wang HP, Pan M, Yin SY, Wei ZW, et al. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat Commun. 2017;8:1–10.

    Article  Google Scholar 

  11. Zhang Y, Liang C, Jiang S. A solvatochromic cyanostilbene derivative as an intensity and wavelength-based fluorescent sensor for water in organic solvents. New J Chem. 2017;41:8644–9.

    Article  CAS  Google Scholar 

  12. Wang T, Li H. A red-emitting luminescent material capable of detecting low water content in organic solvents. Chem Eur J. 2016;22:12400–5.

    Article  CAS  Google Scholar 

  13. Chao D, Lyu W, Liu Y. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. J Mater Chem C. 2018;6:7527–32.

    Article  CAS  Google Scholar 

  14. Huang Y, Liu W, Feng H, Ye Y, Tang C, Ao H, et al. Luminescent nanoswitch based on organic-phase copper nanoclusters for sensitive detection of trace amount of water in organic solvents. Anal Chem. 2016;88:7429–34.

    Article  CAS  Google Scholar 

  15. Cheng W, Xie Y, Yang Z. General strategy for in situ generation of a coumarin-Cu2+ complex for fluorescent water sensing. Anal Chem. 2019;91:5817–23.

    Article  CAS  Google Scholar 

  16. Dong Y, Cai J, Fang Q, You X, Chi Y. Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal Chem. 2016;88:1748–52.

    Article  CAS  Google Scholar 

  17. Ju YJ, Li N, Liu SG, Han L, Xiao N, Luo HQ, et al. Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sensors Actuators B Chem. 2018;275:244–50.

    Article  CAS  Google Scholar 

  18. Wang T, Tao Z, Lyu Y, Qian P, Li Y, Lin X, et al. A reusable ratiometric fluorescent biosensor with simple operation for cysteine detection in biological sample. Sensors Actuators B Chem. 2018;277:415–22.

    Article  CAS  Google Scholar 

  19. Wang J, Zhang Z, Gao X, Lin X, Liu Y, Wang S. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection. Sensors Actuators B Chem. 2019;282:712–8.

    Article  CAS  Google Scholar 

  20. Deng J, Liu Y, Lin X, Lyu Y, Qian P, Wang S. A ratiometric fluorescent biosensor based on cascaded amplification strategy for ultrasensitive detection of kanamycin. Sensors Actuators B Chem. 2018;273:1495–500.

    Article  CAS  Google Scholar 

  21. Yang LM, Fang GY, Ma J, Pushpa R, Ganz E. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Phys Chem Chem Phys. 2016;18:32319–30.

    Article  CAS  Google Scholar 

  22. Debroye E, Ceulemans M, Elst LV, Laurent S, Muller RN, Parac TN. Controlled synthesis of a novel heteropolymetallic complex with selectively incorporated lanthanide (III) ions. Inorg Chem. 2014;53:1257–9.

    Article  CAS  Google Scholar 

  23. Mahmoud ME, Moussa Z, Prakasam T. Lanthanides based metal organic frameworks for luminescence sensing of toxic metal ions. J Solid State Chem. 2020;281:121031.

    Article  CAS  Google Scholar 

  24. Sun T, Xu B, Chen B, Chen X, Li M, Shi P, et al. Anti-counterfeiting patterns encrypted with multi-mode luminescent nanotaggants. Nanoscale. 2017;9:2701–5.

    Article  CAS  Google Scholar 

  25. Zeng HH, Zhang L, Rong LQ, Liang RP, Qiu JD. A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection. Biosens Bioelectron. 2017;89:721–7.

    Article  CAS  Google Scholar 

  26. Tripathi KM, Sachan A, Castro M. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustain. Mater Technol. 2018;16:1–11.

    CAS  Google Scholar 

  27. Tripathi KM, Kim TY, Losic D. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon. 2016;110:97–129.

    Article  CAS  Google Scholar 

  28. Wang T, Mei Q, Tao Z, Wu H, Zhao M, Wang S, et al. A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens Bioelectron. 2020;148:111791.

    Article  CAS  Google Scholar 

  29. Tang C, Bando Y, Golberg D. Cerium phosphate nanotubes: synthesis, valence state, and optical properties. Angew Chem Int Ed. 2005;117:582–5.

    Article  Google Scholar 

  30. Dejneka MJ, Streltsov A, Pal S. Rare earth-doped glass microbarcodes. Proc Natl Acad Sci. 2003;100:389–93.

    Article  CAS  Google Scholar 

  31. Wu JX, Yan B. A dual-emission probe to detect moisture and water in organic solvents based on green-Tb3+ post-coordinated metal-organic frameworks with red carbon dots. Dalton Trans. 2017;46:7098–105.

    Article  CAS  Google Scholar 

  32. Ji G, Wang J, Gao X, Liu J, Guan W, Liu H, et al. Hypersensitive self-referencing detection traces of water in ethyl alcohol by dual-emission lanthanide metal-organic frameworks. Eur J Inorg Chem. 2018;2018:1998–2003.

    Article  CAS  Google Scholar 

  33. Gao F, Luo F, Chen X, Yao W, Yin J, Yao Z, et al. Fluorometric determination of water in organic solvents using europium ion-based luminescent nanospheres. Microchim Acta. 2009;166:163–7.

    Article  CAS  Google Scholar 

  34. Liang J, Chen BQ, Long YT. A microgap impedance sensor for the determination of trace water in organic solvents. Analyst. 2011;136:4053–8.

    Article  CAS  Google Scholar 

  35. Tan J, Wang X, Zhang Q, Zhou H, Yang J, Wu J, et al. Chalcone based ion-pair recognition towards nitrates and the application for the colorimetric and fluorescence turn-on determination of water content in organic solvents. Sensors Actuators B Chem. 2018;260:727–35.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 21775108) and Tianjin Science and Technology Project (18PTSYJC00130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, T., Wang, X. et al. Ratiometric fluorescence nanoplatform integrated with smartphone as readout device for sensing trace water. Anal Bioanal Chem 413, 4267–4275 (2021). https://doi.org/10.1007/s00216-021-03378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03378-5

Keywords

Navigation