Skip to main content
Log in

A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2,6-pyridinedicarboxylic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a structure-dependent ratiometric fluorescence (RF) sensor constructed with boric acid–modified carbon quantum dots (B-CQDs) and Tb-MOF(MOF-76) was developed for sensing 2,6-pyridinedicarboxylic acid (DPA). Based on the distinct fluorescent responses of B-CQDs and MOF-76 to DPA, MOF-76/B-CQDs can be developed as a RF sensor for DPA detection. In this RF sensor, the reticulated cross-linked structure of MOF-76/B-CQDs can be destroyed by DPA due to a strong coordination effect between DPA and the Tb of MOF-76, resulting in the quenching of the fluorescence of B-CQD and the restoration of the fluorescence of MOF-76 after the addition of DPA. Benefiting from the confinement effect of the special structure change, the presented sensor showed high sensitivity toward DPA with a detection limit of 3.05 μM and excellent selectivity over the monochromatic fluorescence sensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yilmaz MD, Hsu S-H, Reinhoudt DN, Velders AH, Huskens J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew Chem Int Ed. 2010;49(34):5938–41.

    Article  CAS  Google Scholar 

  2. Liu X, Li B, Xu Y, Li Z, Zhang Y, Ding Z-J, et al. A highly selective lanthanide-containing probe for ratiometric luminescence detection of an anthrax biomarker. Dalton Trans. 2019;48(22):7714–9.

    Article  CAS  Google Scholar 

  3. Yung PT, Lester ED, Bearman G, Ponce A. An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores. Biotechnol Bioeng. 2007;98(4):864–71.

    Article  CAS  Google Scholar 

  4. Pellegrino PM, Fell NF, Rosen DL, Gillespie JB. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal Chem. 1998;70(9):1755–60.

    Article  CAS  Google Scholar 

  5. Eissa ME. Quantitative microbial risk assessment of pharmaceutical products. PDA J Pharm Sci Technol. 2017;71(3):245–51.

    Article  Google Scholar 

  6. Jin Y, Fei W, Yi W, Suxia G, Chuantao L, Yuxia L, Hongyan L. First report of Fusarium proliferatum causing root rot disease in Salvia miltiorrhiza in China. Plant Dis. 2020. https://doi.org/10.1094/PDIS-09-20-1908-PDN.

  7. Fan S, Zhao F, Zhang J, Shang W, Hu X. American ginseng root rot caused by Fusarium redolens in China. Plant Dis. 2021. https://doi.org/10.1094/PDIS-12-20-2600-PDN.

  8. Wang Q, Meng X, Zhu L, Xu Y, Cui W, He X, et al. A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens. Int J Biol Macromol. 2019;130:213–9.

    Article  CAS  Google Scholar 

  9. Bode E, Hurtle W, Norwood D. Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. J Clin Microbiol. 2004;42(12):5825–31.

    Article  CAS  Google Scholar 

  10. Pillai SP, Prentice KW, Ramage JG, DePalma L, Sarwar J, Parameswaran N, et al. Rapid presumptive identification of Bacillus anthracis isolates using the Tetracore RedLine Alert Test. Health Secur. 2019;17(4):334–43.

    Article  Google Scholar 

  11. Kocisova E, Prochazka M. Drop coating deposition Raman spectroscopy of dipicolinic acid. J Raman Spectrosc. 2018;49(12):2050–2.

    Article  CAS  Google Scholar 

  12. Lahcen AA, Arduini F, Lista F, Amine A. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sensors Actuators B. 2018;276:114–20.

    Article  Google Scholar 

  13. Bhardwaj N, Bhardwaj S, Mehta J, Kim K-H, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron. 2016;86:799–804.

    Article  CAS  Google Scholar 

  14. Luo Y, Zhang L, Zhang L, Yu B, Wang Y, Zhang W. Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection. ACS Appl Mater Interfaces. 2019;11(17):15998–6005.

    Article  CAS  Google Scholar 

  15. Yang D, Mei S, Wen Z, Wei X, Cui Z, Yang B, et al. Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores. Microchim Acta. 2020;187(12):666.

    Article  Google Scholar 

  16. Oh W-K, Jeong YS, Song J, Jang J. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors. Biosens Bioelectron. 2011;29(1):172–7.

    Article  CAS  Google Scholar 

  17. Taylor KML, Lin W. Hybrid silica nanoparticles for luminescent spore detection. J Mater Chem. 2009;19(35):6418–22.

    Article  CAS  Google Scholar 

  18. Zhang R, Yuan JL. Responsive metal complex probes for time-gated luminescence biosensing and imaging. Acc Chem Res. 2020;53(7):1316–29.

    Article  CAS  Google Scholar 

  19. Rieter WJ, Taylor KML, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc. 2007;129(32):9852–3.

    Article  CAS  Google Scholar 

  20. Wang B, Xia J, Zhou G, Li X, Dai M, Jiang D, et al. Tb(iii)-doped nanosheets as a fluorescent probe for the detection of dipicolinic acid. RSC Adv. 2020;10(61):37500–6.

    Article  Google Scholar 

  21. Cai K, Zeng M, Liu F, Liu N, Huang Z, Song Y, et al. BSA-AuNPs@Tb-AMP metal-organic frameworks for ratiometric fluorescence detection of DPA and Hg2+. Luminescence. 2017;32(7):1277–82.

    Article  CAS  Google Scholar 

  22. Chen L, Liu D, Peng J, Du Q, He H. Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives. Coord Chem Rev. 2020;404. https://doi.org/10.1094/PDIS-12-20-2600-PDN.

  23. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75.

    Article  CAS  Google Scholar 

  24. Shi F, Liu S, Su X. Dopamine functionalized-CdTe quantum dots as fluorescence probes for L-histidine detection in biological fluids. Talanta. 2014;125:221–6.

    Article  CAS  Google Scholar 

  25. Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. 2016;183(2):519–42.

    Article  CAS  Google Scholar 

  26. Chen F, Wang YM, Guo W, Yin XB. Color-tunable lanthanide metal-organic framework gels. Chem Sci. 2019;10(6):1644–50.

    Article  CAS  Google Scholar 

  27. Zou W-S, Ye C-H, Wang Y-Q, Li W-H, Huang X-H. A hybrid ratiometric probe for glucose detection based on synchronous responses to fluorescence quenching and resonance light scattering enhancement of boronic acid functionalized carbon dots. Sensors Actuators B. 2018;271:54–63.

    Article  CAS  Google Scholar 

  28. Eskandari H, Amirzehni M, Asadollahzadeh H, Hassanzadeh J, Eslami PA. MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors Actuators B. 2018;275:145–54.

    Article  CAS  Google Scholar 

  29. Aung YY, Kristanti AN, Khairunisa SQ, Nasronudin N, Fahmi MZ. Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomater Sci Eng. 2020;6(8):4490–501.

    Article  CAS  Google Scholar 

  30. Granado VL, Gutierrez-Capitan M, Fernandez-Sanchez C, Gomes MT, Rudnitskaya A, Jimenez-Jorquera C. Thin-film electrochemical sensor for diphenylamine detection using molecularly imprinted polymers. Anal Chim Acta. 2014;809:141–7.

    Article  CAS  Google Scholar 

  31. Hande PE, Samui AB, Kulkarni PS. An efficient method for determination of the diphenylamine (stabilizer) in propellants by molecularly imprinted polymer based carbon paste electrochemical sensor. Propellants Explos Pyrotech. 2017;42(4):376–80.

    Article  CAS  Google Scholar 

  32. Yilmaz MD, Oktem HA. Eriochrome black T-Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal Chem. 2018;90(6):4221–5.

    Article  CAS  Google Scholar 

  33. Cetinkaya Y, Yurt MNZ, Avni Oktem H, Yilmaz MD. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. J Hazard Mater. 2019;377:299–304.

    Article  CAS  Google Scholar 

  34. Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators B. 2015;221:1215–22.

    Article  CAS  Google Scholar 

  35. Chen H-Q, Wu Y, Yuan F, Xu J, Zhang Y-Y, Wang L. Inner filter effect of gold nanoparticles on the fluorescence of rare-earth phosphate nanocrystals and its application for determination of biological aminothiols. J Lumin. 2013;141:33–7.

    Article  CAS  Google Scholar 

  36. Zhang D, Dong Z, Jiang X, Feng M, Li W, Gao G. A proof-of-concept fluorescent strategy for highly selective detection of Cr(VI) based on inner filter effect using a hydrophilic ionic chemosensor. Anal Methods. 2013;5(7):1669–75.

    Article  CAS  Google Scholar 

  37. Shao N, Zhang Y, Cheung SM, Yang RH, Chan WH, Mo T, et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem. 2005;77(22):7294–303.

    Article  CAS  Google Scholar 

  38. Yang X-F, Liu P, Wang L, Zhao M. A chemosensing ensemble for the detection of cysteine based on the inner filter effect using a rhodamine B spirolactam. J Fluoresc. 2008;18(2):453–9.

    Article  CAS  Google Scholar 

  39. Shang L, Dong S. Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal Chem. 2009;81(4):1465–70.

    Article  CAS  Google Scholar 

  40. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces. 2013;5(24):13242–7.

    Article  CAS  Google Scholar 

  41. Wang J, Li RS, Zhang HZ, Wang N, Zhang Z, Huang CZ. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron. 2017;97:157–63.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation Projects of China (No. 81950410634, No. QNJ20200010003) for a Foreign Youth Project fund; the Independent Innovation Fund Project of Agricultural Science and Technology of Jiangsu Province in 2017 (No. CX (17) 1003), and Chinese College Students Innovation Project for the R&D of Novel Drugs (No. 201910316195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, D., Zheng, L. et al. A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2,6-pyridinedicarboxylic acid. Anal Bioanal Chem 413, 4227–4236 (2021). https://doi.org/10.1007/s00216-021-03369-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03369-6

Keywords

Navigation