Skip to main content

Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification

Abstract

Quorum sensing (QS) is a sophisticated bacterial communication system which plays a key role in the virulence and biofilm formation of many pathogens. The Pseudomonas aeruginosa QS network consists of four sets of connected systems (las, rlh, pqs and iqs) hierarchically organized. The pqs system involves characteristic autoinducers (AI), most of them sharing an alkylquinolone (AQ) structure, and is able to carry out several relevant biological functions besides its main signalling activity. Their role in bacterial physiology and pathogenicity has been widely studied. Indeed, the presence of these metabolites in several body fluids and infected tissues has pointed to their potential value as biomarkers of infection. In this review, we summarize the most recent findings about the biological implications and the clinical significance of the main P. aeruginosa AQs. These findings have encouraged the development of analytical and bioanalytical techniques addressed to assess the role of these metabolites in bacterial growth and survival, during pathogenesis or as biomarkers of infections. The availability of highly sensitive reliable analytical methods suitable for clinical analysis would allow getting knowledge about pathogenesis and disease prognosis or progression, supporting clinicians on the decision-making process for the management of these infections and guiding them on the application of more effective and appropriate treatments. The benefits from the implementation of the point-of-care (PoC)–type testing in infectious disease diagnostics, which are seen to improve patient outcomes by promoting earlier therapeutic interventions, are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Cigana C, Lore NI, Bernardini ML, Bragonzi A. Dampening host sensing and avoiding recognition in Pseudomonas aeruginosa pneumonia. J Biomed Biotechnol. 2011;2011:852513.

    PubMed  PubMed Central  Google Scholar 

  2. Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2018;41:15–20.

    CAS  PubMed  Google Scholar 

  3. Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. 2018;31(4).

  4. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92.

    CAS  PubMed  Google Scholar 

  5. Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40(5):738–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Castillo-Juarez I, Maeda T, Mandujano-Tinoco EA, Tomas M, Perez-Eretza B, Garcia-Contreras SJ, et al. Role of quorum sensing in bacterial infections. World J Clin Cases. 2015;3(7):575–98.

    PubMed  PubMed Central  Google Scholar 

  8. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26–41.

    CAS  PubMed  Google Scholar 

  9. Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1997;179(10):3127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol. 1995;177(3):654–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas quinolone signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol. 2018;8:230.

    PubMed  PubMed Central  Google Scholar 

  12. Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, et al. 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol. 2011;193(23):6770–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339–43.

    CAS  PubMed  Google Scholar 

  14. Papenfort K, Bassler BL. Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol. 2002;184(17):4912–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McCready AR, Paczkowski JE, Henke BR, Bassler BL. Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. Proc Natl Acad Sci U S A. 2019;116(1):245–54.

    CAS  PubMed  Google Scholar 

  17. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A. 2001;98(25):14613–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 2000;182(10):2702–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros. 2009;8(1):66–70.

    CAS  PubMed  Google Scholar 

  20. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol. 2003;50(1):29–43.

    CAS  PubMed  Google Scholar 

  21. Barr HL, Halliday N, Barrett DA, Williams P, Forrester DL, Peckham D, et al. Diagnostic and prognostic significance of systemic alkyl quinolones for P. aeruginosa in cystic fibrosis: a longitudinal study. J Cyst Fibros. 2017;16(2):230–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumari A, Pasini P, Daunert S. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem. 2008;391(5):1619–27.

    CAS  PubMed  Google Scholar 

  23. Leipert J, Treitz C, Leippe M, Tholey A. Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017;28(12):2538–47.

    CAS  PubMed  Google Scholar 

  24. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39(Database issue):D596–600.

    CAS  PubMed  Google Scholar 

  25. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog. 2013;9(7):e1003508.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lepine F, Milot S, Deziel E, He J, Rahme LG. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom. 2004;15(6):862–9.

    CAS  PubMed  Google Scholar 

  27. Farrow JM 3rd, Pesci EC. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol. 2007;189(9):3425–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palmer GC, Jorth PA, Whiteley M. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production. Microbiology. 2013;159(Pt 5):959–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Calfee MW, Lindsey CA, et al. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol. 2008;190(4):1247–55.

    CAS  PubMed  Google Scholar 

  30. Kang D, Turner KE, Kirienko NV. PqsA promotes pyoverdine production via biofilm formation. Pathogens. 2017;7(1).

  31. Eric Déziel FL, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. PNAS. 2003;101(5):1339–44.

    Google Scholar 

  32. Zhang YM, Frank MW, Zhu K, Mayasundari A, Rock CO. PqsD is responsible for the synthesis of 2,4-dihydroxyquinoline, an extracellular metabolite produced by Pseudomonas aeruginosa. J Biol Chem. 2008;283(43):28788–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gruber JD, Chen W, Parnham S, Beauchesne K, Moeller P, Flume PA, et al. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity. PeerJ. 2016;4:e1495.

    PubMed  PubMed Central  Google Scholar 

  34. Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, et al. Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol. 2010;12(6):1659–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Drees SL, Fetzner S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem Biol. 2015;22(5):611–8.

    CAS  PubMed  Google Scholar 

  36. Garcia-Reyes S, Soberon-Chavez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol. 2020;69(1):25–34.

    CAS  PubMed  Google Scholar 

  37. Mukherjee S, Moustafa DA, Stergioula V, Smith CD, Goldberg JB, Bassler BL. The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2018;115(40):E9411–E8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, et al. Unravelling the genome-wide contributions of specific 2-Alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog. 2016;12(11):e1006029.

    PubMed  PubMed Central  Google Scholar 

  39. Drees SL, Li C, Prasetya F, Saleem M, Dreveny I, Williams P, et al. PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. J Biol Chem. 2016;291(13):6610–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, et al. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol. 2013;20(12):1481–91.

    CAS  PubMed  Google Scholar 

  41. Drees SL, Ernst S, Belviso BD, Jagmann N, Hennecke U, Fetzner S. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa. J Biol Chem. 2018;293(24):9345–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:106.

    PubMed  PubMed Central  Google Scholar 

  43. Witzgall F, Depke T, Hoffmann M, Empting M, Bronstrup M, Muller R, et al. The alkylquinolone repertoire of Pseudomonas aeruginosa is linked to structural flexibility of the FabH-like 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) biosynthesis enzyme PqsBC. Chembiochem. 2018;19(14):1531–44.

    CAS  PubMed  Google Scholar 

  44. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol. 2002;184(23):6472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst. 2008;4(9):882–8.

    CAS  PubMed  Google Scholar 

  46. Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol. 2010;77(6):1527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol. 2005;187(13):4372–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol. 2006;62(6):1689–99.

    CAS  PubMed  Google Scholar 

  49. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004;72(7):4275–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oglesby AG, Farrow JM 3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem. 2008;283(23):15558–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hodgkinson J, Bowden SD, Galloway WR, Spring DR, Welch M. Structure-activity analysis of the Pseudomonas quinolone signal molecule. J Bacteriol. 2010;192(14):3833–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007;14(1):87–96.

    CAS  PubMed  Google Scholar 

  53. Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyama H. Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol. 2008;190(24):7947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Toyofuku M, Nakajima-Kambe T, Uchiyama H, Nomura N. The effect of a cell-to-cell communication molecule, Pseudomonas quinolone signal (PQS), produced by P. aeruginosa on other bacterial species. Microbes Environ. 2010;25(1):1–7.

    PubMed  Google Scholar 

  55. Bala A, Kumar L, Chhibber S, Harjai K. Augmentation of virulence related traits of pqs mutants by Pseudomonas quinolone signal through membrane vesicles. J Basic Microbiol. 2015;55(5):566–78.

    CAS  PubMed  Google Scholar 

  56. Popat R, Harrison F, da Silva AC, Easton SA, McNally L, Williams P, et al. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. Proc Biol Sci. 2017;284(1852).

  57. Nazik H, Sass G, Ansari SR, Ertekin R, Haas H, Deziel E, et al. Novel intermicrobial molecular interaction: Pseudomonas aeruginosa quinolone signal (PQS) modulates Aspergillus fumigatus response to iron. Microbiology. 2020;166(1):44–55.

    CAS  PubMed  Google Scholar 

  58. Abdalla MY, Hoke T, Seravalli J, Switzer BL, Bavitz M, Fliege JD, et al. Pseudomonas quinolone signal induces oxidative stress and inhibits heme oxygenase-1 expression in lung epithelial cells. Infect Immun. 2017;85(9).

  59. Haussler S, Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog. 2008;4(9):e1000166.

    PubMed  PubMed Central  Google Scholar 

  60. Jean-Louis Bru BR, Trinh C, Whiteson K, Høyland-Kroghsbo NM, Siryaporn A. PQS signaling for more than a quorum: the collective stress response protects healthy Pseudomonas aeruginosa populations. J Bacteriol. 2019;201(23).

  61. Pezzoni M, Meichtry M, Pizarro RA, Costa CS. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. J Photochem Photobiol B. 2015;142:129–40.

    CAS  PubMed  Google Scholar 

  62. Rieger B, Thierbach S, Ommer M, Dienhart FSV, Fetzner S, Busch KB. Pseudomonas quinolone signal molecule PQS behaves like a B class inhibitor at the IQ site of mitochondrial complex I. FASEB Bioadv. 2020;2(3):188–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol. 2006;8(6):1095–104.

    CAS  PubMed  Google Scholar 

  64. Tettmann B, Niewerth C, Kirschhofer F, Neidig A, Dotsch A, Brenner-Weiss G, et al. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS) promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability. Front Microbiol. 2016;7:1978.

    PubMed  PubMed Central  Google Scholar 

  65. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–28.

    CAS  PubMed  Google Scholar 

  66. D'Argenio DA, Calfee MW, Rainey PB, Pesci EC. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol. 2002;184(23):6481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cooke AC, Nello AV, Ernst RK, Schertzer JW. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One. 2019;14(2):e0212275.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437(7057):422–5.

    CAS  PubMed  Google Scholar 

  69. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, et al. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol. 2008;69(2):491–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006;61(4):839–46.

    CAS  PubMed  Google Scholar 

  71. Florez C, Raab JE, Cooke AC, Schertzer JW. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio. 2017;8(4).

  72. Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol. 2011;77(2):413–28.

    CAS  PubMed  Google Scholar 

  73. Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa interaction, with focus on the role of eicosanoids. Front Physiol. 2016;7:64.

    PubMed  PubMed Central  Google Scholar 

  74. Magalhaes AP, Lopes SP, Pereira MO. Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics. Front Microbiol. 2016;7:2146.

    PubMed  Google Scholar 

  75. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, et al. Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol. 2006;13(7):701–10.

    CAS  PubMed  Google Scholar 

  76. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A. 2012;109(47):19420–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15(11):e2003981.

    PubMed  PubMed Central  Google Scholar 

  78. Orazi G, O'Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8(4).

  79. Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, et al. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol. 2016;26(2):195–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, et al. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem. 2018;293(40):15664–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pallett R, Leslie LJ, Lambert PA, Milic I, Devitt A, Marshall LJ. Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep. 2019;9(1):6748.

    PubMed  PubMed Central  Google Scholar 

  82. Sams T, Baker Y, Hodgkinson J, Gross J, Spring D, Welch M. The Pseudomonas quinolone signal (PQS). Isr J Chem. 2016;56(5):282–94.

    CAS  Google Scholar 

  83. Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.

    CAS  PubMed  Google Scholar 

  84. Curutiu C, Iordache F, Lazar V, Pisoschi AM, Pop A, Chifiriuc MC, et al. Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells. Beilstein J Org Chem. 2018;14:2580–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, et al. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology. 2010;129(4):578–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu YC, Hussain F, Negm O, Pavia A, Halliday N, Dubern JF, et al. Contribution of the alkylquinolone quorum-sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells. Front Microbiol. 2018;9:3018.

    PubMed  PubMed Central  Google Scholar 

  87. Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol. 2009;55(3):335–45.

    CAS  PubMed  Google Scholar 

  88. Holban AM, Bleotu C, Chifiriuc MC, Bezirtzoglou E, Lazar V. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. Virulence. 2014;5(2):303–10.

    PubMed  PubMed Central  Google Scholar 

  89. Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem. 2018;293(25):9824–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hansch GM, Prior B, Brenner-Weiss G, Obst U, Overhage J. The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils. J Appl Biomater Funct Mater. 2014;12(1):21–6.

    PubMed  Google Scholar 

  91. Heijerman H. Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros. 2005;4(Suppl 2):3–5.

    CAS  PubMed  Google Scholar 

  92. Burns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity? J Cyst Fibros. 2014;13(1):1–9.

    PubMed  Google Scholar 

  93. Blanchard AC, Rooney AM, Yau Y, Zhang Y, Stapleton PJ, Horton E, et al. Early detection using qPCR of Pseudomonas aeruginosa infection in children with cystic fibrosis undergoing eradication treatment. J Cyst Fibros. 2018;17(6):723–8.

    CAS  PubMed  Google Scholar 

  94. Guo J, Zhong Z, Li Y, Liu Y, Wang R, Ju H. “Three-in-one” SERS adhesive tape for rapid sampling, release, and detection of wound infectious pathogens. ACS Appl Mater Interfaces. 2019;11(40):36399–408.

    CAS  PubMed  Google Scholar 

  95. Ni PX, Ding X, Zhang YX, Yao X, Sun RX, Wang P, et al. Rapid detection and identification of infectious pathogens based on high-throughput sequencing. Chin Med J. 2015;128(7):877–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zukovskaja O, Agafilushkina S, Sivakov V, Weber K, Cialla-May D, Osminkina L, et al. Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta. 2019;202:171–7.

    CAS  PubMed  Google Scholar 

  97. Cox CR, Voorhees KJ, editors. Bacterial identification by mass spectrometry2014; Dordrecht: Springer Netherlands.

  98. Garibyan L, Avashia N. Polymerase chain reaction. J Invest Dermatol. 2013;133(3):1–4.

    PubMed  Google Scholar 

  99. Mosier-Boss PA. Review of SERS substrates for chemical sensing. Nanomaterials (Basel). 2017;7(6).

  100. Readel E, Portillo A, Talebi M, Armstrong DW. Enantiomeric separation of quorum sensing autoinducer homoserine lactones using GC-MS and LC-MS. Anal Bioanal Chem. 2020;412(12):2927–37.

    CAS  PubMed  Google Scholar 

  101. Lépine F, Déziel E, Milot S, Rahme LG. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta Gen Subj. 2003;1622(1):36–41.

    Google Scholar 

  102. Ortori CA, Dubern JF, Chhabra SR, Camara M, Hardie K, Williams P, et al. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem. 2011;399(2):839–50.

    CAS  PubMed  Google Scholar 

  103. Barr HL, Halliday N, Camara M, Barrett DA, Williams P, Forrester DL, et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J. 2015;46(4):1046–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Webb K, Fogarty A, Barrett DA, Nash EF, Whitehouse JL, Smyth AR, et al. Clinical significance of Pseudomonas aeruginosa 2-alkyl-4-quinolone quorum-sensing signal molecules for long-term outcomes in adults with cystic fibrosis. J Med Microbiol. 2019;68(12):1823–8.

    CAS  PubMed  Google Scholar 

  105. Brewer LK, Jones JW, Blackwood CB, Barbier M, Oglesby-Sherrouse A, Kane MA. Development and bioanalytical method validation of an LC-MS/MS assay for simultaneous quantitation of 2-alkyl-4(1H)-quinolones for application in bacterial cell culture and lung tissue. Anal Bioanal Chem. 2020;412(7):1521–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Turnpenny P, Padfield A, Barton P, Teague J, Rahme LG, Pucci MJ, et al. Bioanalysis of Pseudomonas aeruginosa alkyl quinolone signalling molecules in infected mouse tissue using LC-MS/MS; and its application to a pharmacodynamic evaluation of MvfR inhibition. J Pharm Biomed Anal. 2017;139:44–53.

    CAS  PubMed  Google Scholar 

  107. Fletcher MP, Diggle SP, Crusz SA, Chhabra SR, Camara M, Williams P. A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol. 2007;9(11):2683–93.

    CAS  PubMed  Google Scholar 

  108. Muller C, Fetzner S. A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules. Appl Microbiol Biotechnol. 2013;97(2):751–60.

    PubMed  Google Scholar 

  109. Zhou L, Reen FJ, O'Gara F, McSweeney CM, Clarke SL, Glennon JD, et al. Analysis of Pseudomonas quinolone signal and other bacterial signalling molecules using capillaries coated with highly charged polyelectrolyte monolayers and boron doped diamond electrode. J Chromatogr A. 2012;1251:169–75.

    CAS  PubMed  Google Scholar 

  110. Buzid A, Shang F, Reen FJ, Muimhneachain EO, Clarke SL, Zhou L, et al. Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci Rep. 2016;6:30001.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Buzid A, Reen FJ, Langsi VK, Muimhneacháin EÓ, O'Gara F, McGlacken GP, et al. Direct and rapid electrochemical detection of Pseudomonas aeruginosa quorum signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem. 2017;4(3):533–41.

    CAS  Google Scholar 

  112. Montagut EJ, Vilaplana L, Martin-Gomez MT, Marco MP. High-throughput immunochemical method to assess the 2-heptyl-4-quinolone quorum sensing molecule as a potential biomarker of Pseudomonas aeruginosa infections. ACS Infect Dis. 2020;6(12):3237–46.

    CAS  PubMed  Google Scholar 

  113. Marco M-PM, Enrique-J., inventor In vitro method for detection of infections caused by Pseudomonas aeruginosa. Spain2020 31 of March, 2020.

  114. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1999;96(20):11229–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978.

    PubMed  PubMed Central  Google Scholar 

  116. Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti-Infect Ther. 2020;18(6):499–510.

    CAS  PubMed  Google Scholar 

  117. Saeki EK, Kobayashi RKT, Nakazato G. Quorum sensing system: target to control the spread of bacterial infections. Microb Pathog. 2020;142:104068.

    CAS  PubMed  Google Scholar 

  118. Kushwaha M, Jain SK, Sharma N, Abrol V, Jaglan S, Vishwakarma RA. Establishment of LCMS based platform for discovery of quorum sensing inhibitors: signal detection in Pseudomonas aeruginosa PAO1. ACS Chem Biol. 2018;13(3):657–65.

    CAS  PubMed  Google Scholar 

  119. Maurer CK, Steinbach A, Hartmann RW. Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas quinolone signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors. J Pharm Biomed Anal. 2013;86:127–34.

    CAS  PubMed  Google Scholar 

  120. Phelan VV, Fang J, Dorrestein PC. Mass spectrometry analysis of Pseudomonas aeruginosa treated with azithromycin. J Am Soc Mass Spectrom. 2015;26(6):873–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lanni EJ, Masyuko RN, Driscoll CM, Aerts JT, Shrout JD, Bohn PW, et al. MALDI-guided SIMS: multiscale imaging of metabolites in bacterial biofilms. Anal Chem. 2014;86(18):9139–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dunham SJB, Ellis JF, Baig NF, Morales-Soto N, Cao T, Shrout JD, et al. Quantitative SIMS imaging of agar-based microbial communities. Anal Chem. 2018;90(9):5654–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Brockmann EU, Steil D, Bauwens A, Soltwisch J, Dreisewerd K. Advanced methods for MALDI-MS imaging of the chemical communication in microbial communities. Anal Chem. 2019;91(23):15081–9.

    CAS  PubMed  Google Scholar 

  124. Leipert J, Bobis I, Schubert S, Fickenscher H, Leippe M, Tholey A. Miniaturized dispersive liquid-liquid microextraction and MALDI MS using ionic liquid matrices for the detection of bacterial communication molecules and virulence factors. Anal Bioanal Chem. 2018;410(19):4737–48.

    CAS  PubMed  Google Scholar 

  125. Bardin EE, Cameron SJS, Perdones-Montero A, Hardiman K, Bolt F, Alton E, et al. Metabolic phenotyping and strain characterisation of Pseudomonas aeruginosa isolates from cystic fibrosis patients using rapid evaporative ionisation mass spectrometry. Sci Rep. 2018;8(1):10952.

    PubMed  PubMed Central  Google Scholar 

  126. Baig N, Polisetti S, Morales-Soto N, Dunham SJB, Sweedler JV, Shrout JD, et al. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. Proc SPIE Int Soc Opt Eng. 2016;9930.

  127. Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS, Bohn PW, et al. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J Biol Chem. 2018;293(24):9544–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Seviour T, Doyle LE, Lauw SJL, Hinks J, Rice SA, Nesatyy VJ, et al. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun. 2015;51(18):3789–92.

    CAS  Google Scholar 

  129. Vukomanovic DV, Zoutman DE, Marks GS, Brien JF, van Loon GW, Nakatsu K. Analysis of pyocyanin from Pseudomonas aeruginosa by adsorptive stripping voltammetry. J Pharmacol Toxicol Methods. 1996;36(2):97–102.

    CAS  PubMed  Google Scholar 

  130. Oziat J, Gougis M, Malliaras GG, Mailley P. Electrochemical characterizations of four main redox–metabolites of Pseudomonas aeruginosa. Electroanalysis. 2017;29(5):1332–40.

    CAS  Google Scholar 

  131. Burgoyne ED, Molina-Osorio AF, Moshrefi R, Shanahan R, McGlacken GP, Stockmann TJ, et al. Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer. Analyst. 2020;145(21):7000–8.

    PubMed  Google Scholar 

  132. Burgoyne ED, Stockmann TJ, Molina-Osorio AF, Shanahan R, McGlacken GP, Scanlon MD. Electrochemical detection of Pseudomonas aeruginosa quorum sensing molecules at a liquid|liquid interface. J Phys Chem C. 2019;123(40):24643–50.

    CAS  Google Scholar 

  133. Pastells C, Pascual N, Sanchez-Baeza F, Marco MP. Immunochemical determination of pyocyanin and 1-hydroxyphenazine as potential biomarkers of Pseudomonas aeruginosa infections. Anal Chem. 2016;88(3):1631–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work has been funded by the Ministry of Economy and Competitiveness (SAF2015-67476-R and RTI2018-096278-B-C21) and Fundación Marató de TV3 (TV32018-201825-30-31). The Nb4D group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient: 2017 SGR 1441). CIBER-BBN is an initiative funded by the Spanish National Plan for Scientific and Technical Research and Innovation 2013–2016, Iniciativa Ingenio 2010, Consolider Program; CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Enrique-J. Montagut wishes to thank the FPI fellowship (BES-2016-076496) from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Marco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection Analytical Chemistry for Infectious Disease Detection and Prevention with guest editors Chaoyong Yang and XiuJun (James) Li.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montagut, E.J., Marco, M.P. Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal Bioanal Chem 413, 4599–4618 (2021). https://doi.org/10.1007/s00216-021-03356-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03356-x

Keywords

  • Alkylquinolones
  • Quorum sensing
  • Pseudomonas aeruginosa
  • Quantification
  • Detection
  • Diagnostic