Cigana C, Lore NI, Bernardini ML, Bragonzi A. Dampening host sensing and avoiding recognition in Pseudomonas aeruginosa pneumonia. J Biomed Biotechnol. 2011;2011:852513.
PubMed
PubMed Central
Google Scholar
Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2018;41:15–20.
CAS
PubMed
Google Scholar
Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. 2018;31(4).
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92.
CAS
PubMed
Google Scholar
Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40(5):738–52.
CAS
PubMed
PubMed Central
Google Scholar
Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–22.
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Juarez I, Maeda T, Mandujano-Tinoco EA, Tomas M, Perez-Eretza B, Garcia-Contreras SJ, et al. Role of quorum sensing in bacterial infections. World J Clin Cases. 2015;3(7):575–98.
PubMed
PubMed Central
Google Scholar
Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26–41.
CAS
PubMed
Google Scholar
Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1997;179(10):3127–32.
CAS
PubMed
PubMed Central
Google Scholar
Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol. 1995;177(3):654–9.
CAS
PubMed
PubMed Central
Google Scholar
Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas quinolone signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol. 2018;8:230.
PubMed
PubMed Central
Google Scholar
Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, et al. 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol. 2011;193(23):6770–80.
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339–43.
CAS
PubMed
Google Scholar
Papenfort K, Bassler BL. Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–88.
CAS
PubMed
PubMed Central
Google Scholar
Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol. 2002;184(17):4912–9.
CAS
PubMed
PubMed Central
Google Scholar
McCready AR, Paczkowski JE, Henke BR, Bassler BL. Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. Proc Natl Acad Sci U S A. 2019;116(1):245–54.
CAS
PubMed
Google Scholar
Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A. 2001;98(25):14613–8.
CAS
PubMed
PubMed Central
Google Scholar
McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 2000;182(10):2702–8.
CAS
PubMed
PubMed Central
Google Scholar
Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros. 2009;8(1):66–70.
CAS
PubMed
Google Scholar
Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol. 2003;50(1):29–43.
CAS
PubMed
Google Scholar
Barr HL, Halliday N, Barrett DA, Williams P, Forrester DL, Peckham D, et al. Diagnostic and prognostic significance of systemic alkyl quinolones for P. aeruginosa in cystic fibrosis: a longitudinal study. J Cyst Fibros. 2017;16(2):230–8.
CAS
PubMed
PubMed Central
Google Scholar
Kumari A, Pasini P, Daunert S. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem. 2008;391(5):1619–27.
CAS
PubMed
Google Scholar
Leipert J, Treitz C, Leippe M, Tholey A. Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017;28(12):2538–47.
CAS
PubMed
Google Scholar
Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39(Database issue):D596–600.
CAS
PubMed
Google Scholar
Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog. 2013;9(7):e1003508.
CAS
PubMed
PubMed Central
Google Scholar
Lepine F, Milot S, Deziel E, He J, Rahme LG. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom. 2004;15(6):862–9.
CAS
PubMed
Google Scholar
Farrow JM 3rd, Pesci EC. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol. 2007;189(9):3425–33.
CAS
PubMed
PubMed Central
Google Scholar
Palmer GC, Jorth PA, Whiteley M. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production. Microbiology. 2013;159(Pt 5):959–69.
CAS
PubMed
PubMed Central
Google Scholar
Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Calfee MW, Lindsey CA, et al. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol. 2008;190(4):1247–55.
CAS
PubMed
Google Scholar
Kang D, Turner KE, Kirienko NV. PqsA promotes pyoverdine production via biofilm formation. Pathogens. 2017;7(1).
Eric Déziel FL, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. PNAS. 2003;101(5):1339–44.
Google Scholar
Zhang YM, Frank MW, Zhu K, Mayasundari A, Rock CO. PqsD is responsible for the synthesis of 2,4-dihydroxyquinoline, an extracellular metabolite produced by Pseudomonas aeruginosa. J Biol Chem. 2008;283(43):28788–94.
CAS
PubMed
PubMed Central
Google Scholar
Gruber JD, Chen W, Parnham S, Beauchesne K, Moeller P, Flume PA, et al. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity. PeerJ. 2016;4:e1495.
PubMed
PubMed Central
Google Scholar
Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, et al. Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol. 2010;12(6):1659–73.
CAS
PubMed
PubMed Central
Google Scholar
Drees SL, Fetzner S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem Biol. 2015;22(5):611–8.
CAS
PubMed
Google Scholar
Garcia-Reyes S, Soberon-Chavez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol. 2020;69(1):25–34.
CAS
PubMed
Google Scholar
Mukherjee S, Moustafa DA, Stergioula V, Smith CD, Goldberg JB, Bassler BL. The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2018;115(40):E9411–E8.
CAS
PubMed
PubMed Central
Google Scholar
Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, et al. Unravelling the genome-wide contributions of specific 2-Alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog. 2016;12(11):e1006029.
PubMed
PubMed Central
Google Scholar
Drees SL, Li C, Prasetya F, Saleem M, Dreveny I, Williams P, et al. PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. J Biol Chem. 2016;291(13):6610–24.
CAS
PubMed
PubMed Central
Google Scholar
Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, et al. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol. 2013;20(12):1481–91.
CAS
PubMed
Google Scholar
Drees SL, Ernst S, Belviso BD, Jagmann N, Hennecke U, Fetzner S. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa. J Biol Chem. 2018;293(24):9345–57.
CAS
PubMed
PubMed Central
Google Scholar
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:106.
PubMed
PubMed Central
Google Scholar
Witzgall F, Depke T, Hoffmann M, Empting M, Bronstrup M, Muller R, et al. The alkylquinolone repertoire of Pseudomonas aeruginosa is linked to structural flexibility of the FabH-like 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) biosynthesis enzyme PqsBC. Chembiochem. 2018;19(14):1531–44.
CAS
PubMed
Google Scholar
Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol. 2002;184(23):6472–80.
CAS
PubMed
PubMed Central
Google Scholar
Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst. 2008;4(9):882–8.
CAS
PubMed
Google Scholar
Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol. 2010;77(6):1527–38.
CAS
PubMed
PubMed Central
Google Scholar
Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol. 2005;187(13):4372–80.
CAS
PubMed
PubMed Central
Google Scholar
Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol. 2006;62(6):1689–99.
CAS
PubMed
Google Scholar
Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004;72(7):4275–8.
CAS
PubMed
PubMed Central
Google Scholar
Oglesby AG, Farrow JM 3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem. 2008;283(23):15558–67.
CAS
PubMed
PubMed Central
Google Scholar
Hodgkinson J, Bowden SD, Galloway WR, Spring DR, Welch M. Structure-activity analysis of the Pseudomonas quinolone signal molecule. J Bacteriol. 2010;192(14):3833–7.
CAS
PubMed
PubMed Central
Google Scholar
Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007;14(1):87–96.
CAS
PubMed
Google Scholar
Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyama H. Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol. 2008;190(24):7947–56.
CAS
PubMed
PubMed Central
Google Scholar
Toyofuku M, Nakajima-Kambe T, Uchiyama H, Nomura N. The effect of a cell-to-cell communication molecule, Pseudomonas quinolone signal (PQS), produced by P. aeruginosa on other bacterial species. Microbes Environ. 2010;25(1):1–7.
PubMed
Google Scholar
Bala A, Kumar L, Chhibber S, Harjai K. Augmentation of virulence related traits of pqs mutants by Pseudomonas quinolone signal through membrane vesicles. J Basic Microbiol. 2015;55(5):566–78.
CAS
PubMed
Google Scholar
Popat R, Harrison F, da Silva AC, Easton SA, McNally L, Williams P, et al. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. Proc Biol Sci. 2017;284(1852).
Nazik H, Sass G, Ansari SR, Ertekin R, Haas H, Deziel E, et al. Novel intermicrobial molecular interaction: Pseudomonas aeruginosa quinolone signal (PQS) modulates Aspergillus fumigatus response to iron. Microbiology. 2020;166(1):44–55.
CAS
PubMed
Google Scholar
Abdalla MY, Hoke T, Seravalli J, Switzer BL, Bavitz M, Fliege JD, et al. Pseudomonas quinolone signal induces oxidative stress and inhibits heme oxygenase-1 expression in lung epithelial cells. Infect Immun. 2017;85(9).
Haussler S, Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog. 2008;4(9):e1000166.
PubMed
PubMed Central
Google Scholar
Jean-Louis Bru BR, Trinh C, Whiteson K, Høyland-Kroghsbo NM, Siryaporn A. PQS signaling for more than a quorum: the collective stress response protects healthy Pseudomonas aeruginosa populations. J Bacteriol. 2019;201(23).
Pezzoni M, Meichtry M, Pizarro RA, Costa CS. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. J Photochem Photobiol B. 2015;142:129–40.
CAS
PubMed
Google Scholar
Rieger B, Thierbach S, Ommer M, Dienhart FSV, Fetzner S, Busch KB. Pseudomonas quinolone signal molecule PQS behaves like a B class inhibitor at the IQ site of mitochondrial complex I. FASEB Bioadv. 2020;2(3):188–202.
CAS
PubMed
PubMed Central
Google Scholar
Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol. 2006;8(6):1095–104.
CAS
PubMed
Google Scholar
Tettmann B, Niewerth C, Kirschhofer F, Neidig A, Dotsch A, Brenner-Weiss G, et al. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS) promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability. Front Microbiol. 2016;7:1978.
PubMed
PubMed Central
Google Scholar
Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–28.
CAS
PubMed
Google Scholar
D'Argenio DA, Calfee MW, Rainey PB, Pesci EC. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol. 2002;184(23):6481–9.
CAS
PubMed
PubMed Central
Google Scholar
Cooke AC, Nello AV, Ernst RK, Schertzer JW. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One. 2019;14(2):e0212275.
CAS
PubMed
PubMed Central
Google Scholar
Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437(7057):422–5.
CAS
PubMed
Google Scholar
Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, et al. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol. 2008;69(2):491–502.
CAS
PubMed
PubMed Central
Google Scholar
Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006;61(4):839–46.
CAS
PubMed
Google Scholar
Florez C, Raab JE, Cooke AC, Schertzer JW. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio. 2017;8(4).
Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol. 2011;77(2):413–28.
CAS
PubMed
Google Scholar
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa interaction, with focus on the role of eicosanoids. Front Physiol. 2016;7:64.
PubMed
PubMed Central
Google Scholar
Magalhaes AP, Lopes SP, Pereira MO. Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics. Front Microbiol. 2016;7:2146.
PubMed
Google Scholar
Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, et al. Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol. 2006;13(7):701–10.
CAS
PubMed
Google Scholar
Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A. 2012;109(47):19420–5.
CAS
PubMed
PubMed Central
Google Scholar
Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15(11):e2003981.
PubMed
PubMed Central
Google Scholar
Orazi G, O'Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8(4).
Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, et al. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol. 2016;26(2):195–206.
CAS
PubMed
PubMed Central
Google Scholar
Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, et al. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem. 2018;293(40):15664–77.
CAS
PubMed
PubMed Central
Google Scholar
Pallett R, Leslie LJ, Lambert PA, Milic I, Devitt A, Marshall LJ. Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep. 2019;9(1):6748.
PubMed
PubMed Central
Google Scholar
Sams T, Baker Y, Hodgkinson J, Gross J, Spring D, Welch M. The Pseudomonas quinolone signal (PQS). Isr J Chem. 2016;56(5):282–94.
CAS
Google Scholar
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.
CAS
PubMed
Google Scholar
Curutiu C, Iordache F, Lazar V, Pisoschi AM, Pop A, Chifiriuc MC, et al. Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells. Beilstein J Org Chem. 2018;14:2580–8.
CAS
PubMed
PubMed Central
Google Scholar
Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, et al. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology. 2010;129(4):578–88.
CAS
PubMed
PubMed Central
Google Scholar
Liu YC, Hussain F, Negm O, Pavia A, Halliday N, Dubern JF, et al. Contribution of the alkylquinolone quorum-sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells. Front Microbiol. 2018;9:3018.
PubMed
PubMed Central
Google Scholar
Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol. 2009;55(3):335–45.
CAS
PubMed
Google Scholar
Holban AM, Bleotu C, Chifiriuc MC, Bezirtzoglou E, Lazar V. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. Virulence. 2014;5(2):303–10.
PubMed
PubMed Central
Google Scholar
Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem. 2018;293(25):9824–40.
CAS
PubMed
PubMed Central
Google Scholar
Hansch GM, Prior B, Brenner-Weiss G, Obst U, Overhage J. The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils. J Appl Biomater Funct Mater. 2014;12(1):21–6.
PubMed
Google Scholar
Heijerman H. Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros. 2005;4(Suppl 2):3–5.
CAS
PubMed
Google Scholar
Burns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity? J Cyst Fibros. 2014;13(1):1–9.
PubMed
Google Scholar
Blanchard AC, Rooney AM, Yau Y, Zhang Y, Stapleton PJ, Horton E, et al. Early detection using qPCR of Pseudomonas aeruginosa infection in children with cystic fibrosis undergoing eradication treatment. J Cyst Fibros. 2018;17(6):723–8.
CAS
PubMed
Google Scholar
Guo J, Zhong Z, Li Y, Liu Y, Wang R, Ju H. “Three-in-one” SERS adhesive tape for rapid sampling, release, and detection of wound infectious pathogens. ACS Appl Mater Interfaces. 2019;11(40):36399–408.
CAS
PubMed
Google Scholar
Ni PX, Ding X, Zhang YX, Yao X, Sun RX, Wang P, et al. Rapid detection and identification of infectious pathogens based on high-throughput sequencing. Chin Med J. 2015;128(7):877–83.
CAS
PubMed
PubMed Central
Google Scholar
Zukovskaja O, Agafilushkina S, Sivakov V, Weber K, Cialla-May D, Osminkina L, et al. Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta. 2019;202:171–7.
CAS
PubMed
Google Scholar
Cox CR, Voorhees KJ, editors. Bacterial identification by mass spectrometry2014; Dordrecht: Springer Netherlands.
Garibyan L, Avashia N. Polymerase chain reaction. J Invest Dermatol. 2013;133(3):1–4.
PubMed
Google Scholar
Mosier-Boss PA. Review of SERS substrates for chemical sensing. Nanomaterials (Basel). 2017;7(6).
Readel E, Portillo A, Talebi M, Armstrong DW. Enantiomeric separation of quorum sensing autoinducer homoserine lactones using GC-MS and LC-MS. Anal Bioanal Chem. 2020;412(12):2927–37.
CAS
PubMed
Google Scholar
Lépine F, Déziel E, Milot S, Rahme LG. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta Gen Subj. 2003;1622(1):36–41.
Google Scholar
Ortori CA, Dubern JF, Chhabra SR, Camara M, Hardie K, Williams P, et al. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem. 2011;399(2):839–50.
CAS
PubMed
Google Scholar
Barr HL, Halliday N, Camara M, Barrett DA, Williams P, Forrester DL, et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J. 2015;46(4):1046–54.
CAS
PubMed
PubMed Central
Google Scholar
Webb K, Fogarty A, Barrett DA, Nash EF, Whitehouse JL, Smyth AR, et al. Clinical significance of Pseudomonas aeruginosa 2-alkyl-4-quinolone quorum-sensing signal molecules for long-term outcomes in adults with cystic fibrosis. J Med Microbiol. 2019;68(12):1823–8.
CAS
PubMed
Google Scholar
Brewer LK, Jones JW, Blackwood CB, Barbier M, Oglesby-Sherrouse A, Kane MA. Development and bioanalytical method validation of an LC-MS/MS assay for simultaneous quantitation of 2-alkyl-4(1H)-quinolones for application in bacterial cell culture and lung tissue. Anal Bioanal Chem. 2020;412(7):1521–34.
CAS
PubMed
PubMed Central
Google Scholar
Turnpenny P, Padfield A, Barton P, Teague J, Rahme LG, Pucci MJ, et al. Bioanalysis of Pseudomonas aeruginosa alkyl quinolone signalling molecules in infected mouse tissue using LC-MS/MS; and its application to a pharmacodynamic evaluation of MvfR inhibition. J Pharm Biomed Anal. 2017;139:44–53.
CAS
PubMed
Google Scholar
Fletcher MP, Diggle SP, Crusz SA, Chhabra SR, Camara M, Williams P. A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol. 2007;9(11):2683–93.
CAS
PubMed
Google Scholar
Muller C, Fetzner S. A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules. Appl Microbiol Biotechnol. 2013;97(2):751–60.
PubMed
Google Scholar
Zhou L, Reen FJ, O'Gara F, McSweeney CM, Clarke SL, Glennon JD, et al. Analysis of Pseudomonas quinolone signal and other bacterial signalling molecules using capillaries coated with highly charged polyelectrolyte monolayers and boron doped diamond electrode. J Chromatogr A. 2012;1251:169–75.
CAS
PubMed
Google Scholar
Buzid A, Shang F, Reen FJ, Muimhneachain EO, Clarke SL, Zhou L, et al. Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci Rep. 2016;6:30001.
CAS
PubMed
PubMed Central
Google Scholar
Buzid A, Reen FJ, Langsi VK, Muimhneacháin EÓ, O'Gara F, McGlacken GP, et al. Direct and rapid electrochemical detection of Pseudomonas aeruginosa quorum signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem. 2017;4(3):533–41.
CAS
Google Scholar
Montagut EJ, Vilaplana L, Martin-Gomez MT, Marco MP. High-throughput immunochemical method to assess the 2-heptyl-4-quinolone quorum sensing molecule as a potential biomarker of Pseudomonas aeruginosa infections. ACS Infect Dis. 2020;6(12):3237–46.
CAS
PubMed
Google Scholar
Marco M-PM, Enrique-J., inventor In vitro method for detection of infections caused by Pseudomonas aeruginosa. Spain2020 31 of March, 2020.
Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1999;96(20):11229–34.
CAS
PubMed
PubMed Central
Google Scholar
Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978.
PubMed
PubMed Central
Google Scholar
Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti-Infect Ther. 2020;18(6):499–510.
CAS
PubMed
Google Scholar
Saeki EK, Kobayashi RKT, Nakazato G. Quorum sensing system: target to control the spread of bacterial infections. Microb Pathog. 2020;142:104068.
CAS
PubMed
Google Scholar
Kushwaha M, Jain SK, Sharma N, Abrol V, Jaglan S, Vishwakarma RA. Establishment of LCMS based platform for discovery of quorum sensing inhibitors: signal detection in Pseudomonas aeruginosa PAO1. ACS Chem Biol. 2018;13(3):657–65.
CAS
PubMed
Google Scholar
Maurer CK, Steinbach A, Hartmann RW. Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas quinolone signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors. J Pharm Biomed Anal. 2013;86:127–34.
CAS
PubMed
Google Scholar
Phelan VV, Fang J, Dorrestein PC. Mass spectrometry analysis of Pseudomonas aeruginosa treated with azithromycin. J Am Soc Mass Spectrom. 2015;26(6):873–7.
CAS
PubMed
PubMed Central
Google Scholar
Lanni EJ, Masyuko RN, Driscoll CM, Aerts JT, Shrout JD, Bohn PW, et al. MALDI-guided SIMS: multiscale imaging of metabolites in bacterial biofilms. Anal Chem. 2014;86(18):9139–45.
CAS
PubMed
PubMed Central
Google Scholar
Dunham SJB, Ellis JF, Baig NF, Morales-Soto N, Cao T, Shrout JD, et al. Quantitative SIMS imaging of agar-based microbial communities. Anal Chem. 2018;90(9):5654–63.
CAS
PubMed
PubMed Central
Google Scholar
Brockmann EU, Steil D, Bauwens A, Soltwisch J, Dreisewerd K. Advanced methods for MALDI-MS imaging of the chemical communication in microbial communities. Anal Chem. 2019;91(23):15081–9.
CAS
PubMed
Google Scholar
Leipert J, Bobis I, Schubert S, Fickenscher H, Leippe M, Tholey A. Miniaturized dispersive liquid-liquid microextraction and MALDI MS using ionic liquid matrices for the detection of bacterial communication molecules and virulence factors. Anal Bioanal Chem. 2018;410(19):4737–48.
CAS
PubMed
Google Scholar
Bardin EE, Cameron SJS, Perdones-Montero A, Hardiman K, Bolt F, Alton E, et al. Metabolic phenotyping and strain characterisation of Pseudomonas aeruginosa isolates from cystic fibrosis patients using rapid evaporative ionisation mass spectrometry. Sci Rep. 2018;8(1):10952.
PubMed
PubMed Central
Google Scholar
Baig N, Polisetti S, Morales-Soto N, Dunham SJB, Sweedler JV, Shrout JD, et al. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. Proc SPIE Int Soc Opt Eng. 2016;9930.
Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS, Bohn PW, et al. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J Biol Chem. 2018;293(24):9544–52.
CAS
PubMed
PubMed Central
Google Scholar
Seviour T, Doyle LE, Lauw SJL, Hinks J, Rice SA, Nesatyy VJ, et al. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun. 2015;51(18):3789–92.
CAS
Google Scholar
Vukomanovic DV, Zoutman DE, Marks GS, Brien JF, van Loon GW, Nakatsu K. Analysis of pyocyanin from Pseudomonas aeruginosa by adsorptive stripping voltammetry. J Pharmacol Toxicol Methods. 1996;36(2):97–102.
CAS
PubMed
Google Scholar
Oziat J, Gougis M, Malliaras GG, Mailley P. Electrochemical characterizations of four main redox–metabolites of Pseudomonas aeruginosa. Electroanalysis. 2017;29(5):1332–40.
CAS
Google Scholar
Burgoyne ED, Molina-Osorio AF, Moshrefi R, Shanahan R, McGlacken GP, Stockmann TJ, et al. Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer. Analyst. 2020;145(21):7000–8.
PubMed
Google Scholar
Burgoyne ED, Stockmann TJ, Molina-Osorio AF, Shanahan R, McGlacken GP, Scanlon MD. Electrochemical detection of Pseudomonas aeruginosa quorum sensing molecules at a liquid|liquid interface. J Phys Chem C. 2019;123(40):24643–50.
CAS
Google Scholar
Pastells C, Pascual N, Sanchez-Baeza F, Marco MP. Immunochemical determination of pyocyanin and 1-hydroxyphenazine as potential biomarkers of Pseudomonas aeruginosa infections. Anal Chem. 2016;88(3):1631–8.
CAS
PubMed
Google Scholar