Skip to main content
Log in

Mass spectrometric analysis of adducts of sulfur mustard analogues to human plasma proteins: approach towards chemical provenancing in biomedical samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The primary aim of this study was to identify biomarkers of exposure to some so-called Schedule 1 sulfur mustard (HD) analogues, in order to facilitate and expedite their retrospective analysis in case of alleged use of such compounds. Since these HD analogues can be regarded as model compounds for possible impurities of HD formed during synthesis processes, the secondary aim was to explore to which extent these biomarkers can be used for chemical provenancing of HD in case biomedical samples are available. While the use of chemical attribution signatures (CAS) for neat chemicals or for environmental samples has been addressed quite frequently, the use of CAS for investigating impurities in biomedical samples has been addressed only scarcely. Human plasma was exposed to each of the five HD analogues. After pronase or proteinase K digestion of precipitated protein and sample work-up, the histidine (His) and tripeptide (CPF) adducts to proteins were analyzed, respectively. Adducts of the analogues could still be unambiguously identified next to the main HD adducts in processed plasma samples after exposure to HD mixed with each of the analogues, at a 1% level relative to HD. In conclusion, we have identified plasma protein adducts of a number of HD analogues, which can be used as biomarkers to assess an exposure to these Schedule 1 chemicals. We have shown that adducts of these analogues can still be analyzed after work-up of plasma samples which had been exposed to these analogues in a mixture with HD, supporting the hypothesis that biomedical sample analysis might be useful for chemical provenancing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Yes

Abbreviations

CAS:

Chemical attribution signature(s)

CAS number:

Chemical Abstracts Services number

CPF:

Cysteine-proline-phenylalanine tripeptide

CTA:

Chemical threat agent

CWA:

Chemical warfare agent

CWC:

Chemical Weapons Convention

EIC:

Extracted ion chromatogram

et al.:

et alii/ et alia (and others)

FFM:

Fact-Finding Mission

GB:

Sarin; (RS)-propane-2-yl methylphosphonofluoridate

GC:

Gas chromatography

HETE:

2-((2-Hydroxyethyl)thio)-ethyl

HETE-His:

(2-((2-Hydroxyethyl)thio)-ethyl) histidine

HD:

Sulfur mustard; bis(2-chloroethyl) sulfide

HR:

High resolution

HSA:

Human serum albumin

LC:

Liquid chromatography

LOD:

Limit of detection

MeCN:

Acetonitrile

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

OCAD:

OPCW Central Analytical Database

OPCW:

Organisation for the Prohibition of Chemical Weapons

Q:

Sesquimustard; 1,2-bis(2-chloroethylthio) ethane

QTOF:

Quadrupole time-of-flight

RT:

Retention time

SOP:

Standard operating procedure

SPE:

Solid-phase extraction

TDG:

Thiodiglycol

TIC:

Total ion chromatogram

TIM:

Toxic industrial material

TNO:

The Netherlands Organisation for Applied Scientific Research

TS:

Technical Secretariat

U(H)PLC:

Ultra (high)-performance liquid chromatography

WMD:

Weapons of mass destruction

References

  1. OPCW Conference of State Parties 2018. Addressing the threat from chemical weapons use. https://www.opcw.org/sites/default/files/documents/CSP/C-SS-4/en/css4dec3_e_.doc.pdf

  2. Moran JJ, Fraga CG, Nims MK. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products. Talanta. 2018;186:678–83. https://doi.org/10.1016/j.talanta.2018.04.021.

    Article  CAS  PubMed  Google Scholar 

  3. Mörén L, Qvarnström J, Engqvist M, Afshin-Sander R, Wu X, Dahlén J, et al. Attribution of fentanyl analogue synthesis routes by multivariate data analysis of orthogonal mass spectral data. Talanta. 2019;203:122–30. https://doi.org/10.1016/j.talanta.2019.05.025.

    Article  CAS  PubMed  Google Scholar 

  4. Mayer BP, DeHope AJ, Mew DA, Spackman PE, Williams AM. Chemical attribution of fentanyl using multivariate statistical analysis of orthogonal mass spectral data. Anal Chem. 2016;88:4303–10. https://doi.org/10.1021/acs.analchem.5b04434.

    Article  CAS  PubMed  Google Scholar 

  5. Drummer OH. Fatalities caused by novel opioids: a review. Forensic Sci Res. 2019;4:95–110. https://doi.org/10.1080/20961790.2018.1460063.

    Article  PubMed  Google Scholar 

  6. Armenian P, Vo KT, Barr-Walker J, Lynch KL. Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology. 2018;134:121–32. https://doi.org/10.1016/j.neuropharm.2017.10.016.

    Article  CAS  Google Scholar 

  7. Mayer BP, Valdez CA, DeHope AJ, Spackman PE, Williams AM. Statistical analysis of the chemical attribution signatures of 3-methylfentanyl and its methods of production. Talanta. 2018;186:645–54. https://doi.org/10.1016/j.talanta.2018.02.026.

    Article  CAS  PubMed  Google Scholar 

  8. Holmgren KH, Valdez CA, Magnusson R, Vu AK, Lindberg S, Williams AM, et al. Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures. Talanta. 2018;186:586–96. https://doi.org/10.1016/j.talanta.2018.02.104.

    Article  CAS  PubMed  Google Scholar 

  9. Jansson D, Lindström SW, Norlin R, Hok S, Valdez CA, Williams AM, et al. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Talanta. 2018;186:597–606. https://doi.org/10.1016/j.talanta.2018.02.103.

    Article  CAS  PubMed  Google Scholar 

  10. Williams AM, Vu AK, Mayer BP, Hok S, Valdez CA, Alcaraz A. Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS. Talanta. 2018;186:607–14. https://doi.org/10.1016/j.talanta.2018.03.044.

    Article  CAS  PubMed  Google Scholar 

  11. Fraga CG, Clowers BH, Moore RJ, Zink EM. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem. 2010;82:4165–73. https://doi.org/10.1021/ac1003568.

    Article  CAS  PubMed  Google Scholar 

  12. Hoggard JC, Wahl JH, Synovec RE, Mong GM, Fraga CG. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics. Anal Chem. 2010;82:689–98. https://doi.org/10.1021/ac902247x.

    Article  CAS  PubMed  Google Scholar 

  13. Fredriksson SÅ, Wunschel DS, Lindström SW, Nilsson C, Wahl K, Åstot C. A ricin forensic profiling approach based on a complex set of biomarkers. Talanta. 2018;186:628–35. https://doi.org/10.1016/j.talanta.2018.03.070.

    Article  CAS  PubMed  Google Scholar 

  14. Blum MM, Richter A, Siegert M, Thiermann H, John H. Adduct of the blistering warfare agent sesquimustard with human serum albumin and its mass spectrometric identification for biomedical verification of exposure [published online ahead of print, 2020 Sep 9]. Anal Bioanal Chem 2020; doi:https://doi.org/10.1007/s00216-020-02917-w.

  15. De Bruin-Hoegee M, Kleiweg D, Noort D, Van Asten A. Chemical attribution of fentanyl: the effect of human metabolism. Forensic Chemistry. 2021. https://doi.org/10.1016/j.forc.2021.100330.

  16. Ellison H. Handbook of chemical and biological warfare agents. 1st ed. Boca Raton: FL:CRC Press; 1999.

    Book  Google Scholar 

  17. Ash DH, Lemire SW, McGrath SC, McWilliams LG, Barr JR. Multianalyte quantification of five sesqui- and ethyl ether oxy-mustard metabolites in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Anal Toxicol. 2008;32:44–50. https://doi.org/10.1093/jat/32.1.44.

    Article  CAS  PubMed  Google Scholar 

  18. Höjer Holmgren K, Hok S, Magnusson R, Larsson A, Åstot C, Koester C, et al. Synthesis route attribution of sulfur mustard by multivariate data analysis of chemical signatures. Talanta. 2018;186:615–21. https://doi.org/10.1016/j.talanta.2018.02.100.

    Article  CAS  PubMed  Google Scholar 

  19. Pantazides BG, Crow BS, Garton JW, Quiñones-González JA, Blake TA, Thomas JD, et al. Simplified method for quantifying sulfur mustard adducts to blood proteins by ultrahigh pressure liquid chromatography-isotope dilution tandem mass spectrometry. Chem Res Toxicol. 2015;28:256–61. https://doi.org/10.1021/tx500468h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noort D, Hulst AG, Trap HC, De Jong LPA, Benschop HP. Synthesis and mass spectrometric identification of the major amino acid adducts formed between sulphur mustard and haemoglobin in human blood. Arch Toxicol. 1997;71:171–8. https://doi.org/10.1007/s002040050372.

    Article  CAS  PubMed  Google Scholar 

  21. Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol. 2011;41:384–403. https://doi.org/10.3109/10408444.2010.541224.

    Article  CAS  PubMed  Google Scholar 

  22. Noort D, Hulst AG, De Jong LPA, Benschop HP. Alkylation of human serum albumin by sulfur mustard in vitro and in vivo: mass spectrometric analysis of a cysteine adduct as a sensitive biomarker of exposure. Chem Res Toxicol. 1999;12:715–21. https://doi.org/10.1021/tx9900369.

    Article  CAS  PubMed  Google Scholar 

  23. John H, Koller M, Worek F, Thiermann H, Siegert M. Forensic evidence of sulfur mustard exposure in real cases of human poisoning by detection of diverse albumin-derived protein adducts. Arch Toxicol. 2019;93:1881–91. https://doi.org/10.1007/s00204-019-02461-2.

    Article  CAS  PubMed  Google Scholar 

  24. Noort D, Verheij ER, Hulst AG, De Jong LPA, Benschop HP. Characterization of sulfur mustard induced structural modifications in human hemoglobin by liquid chromatography-tandem mass spectrometry. Chem Res Toxicol. 1996;9:781–7. https://doi.org/10.1021/tx9502148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Netherlands Ministry of Defence is gratefully acknowledged for funding this work.

Funding

This research was supported by The Netherlands Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Noort.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemme, M., Fidder, A., van der Riet-van Oeveren, D. et al. Mass spectrometric analysis of adducts of sulfur mustard analogues to human plasma proteins: approach towards chemical provenancing in biomedical samples. Anal Bioanal Chem 413, 4023–4036 (2021). https://doi.org/10.1007/s00216-021-03354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03354-z

Keywords

Navigation