Skip to main content
Log in

A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A facile and green approach to the preparation of peroxidase-like nanozymes by reducing and functionalizing graphene oxide (rGO) with Ganoderma polysaccharide (GP) has been achieved in this work. Our results showed that the as-fabricated nanozyme, namely rGO-GP, possessed the excellent property of simulating peroxidase with higher catalytic activity compared with GO or rGO obtained by using chitosan, which may be due to the better dispersion of rGO-GP in the solution. Steady-state kinetics studies further showed that the catalytic process conformed to Michaelis-Menten equation and ping-pong mechanism. Benefiting from the excellent peroxidase property of rGO-GP, we have also successfully established a highly sensitive and selective colorimetric detection approach to trace detection of l-cysteine (l-Cys). The limit of detection (LOD) of l-cysteine is 0.1 μM and the linear detection range is 2–30 μM. Furthermore, the nanozyme was successfully applied for detecting l-cysteine in serum. This work therefore demonstrates the advantages of rGO-GP as an effective nanozyme in both its green synthesis and detecting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412.

    Article  CAS  PubMed  Google Scholar 

  2. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  PubMed  Google Scholar 

  3. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76.

    Article  CAS  PubMed  Google Scholar 

  4. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb). 2010;46(42):8017–9.

    Article  Google Scholar 

  5. Yan X, Song Y, Wu X, Zhu C, Su X, Du D, et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale. 2017;9(6):2317–23.

    Article  CAS  PubMed  Google Scholar 

  6. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, et al. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron. 2015;66:251–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ruan X, Liu D, Niu X, Wang Y, Simpson CD, Cheng N, et al. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem. 2019;91(21):13847–54.

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Liu C, Liu Z, Ren J, Qu X. Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics. Small. 2018;14(13):e1703710.

    Article  PubMed  Google Scholar 

  9. Besteman KLJO, Wiertz FGM. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003;3(6):727–30.

    Article  CAS  Google Scholar 

  10. Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron. 2013;49:519–24.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Wan K, Shi X. Recent advances in nanozyme research. Adv Mater. 2019;31(45):e1805368.

    Article  PubMed  Google Scholar 

  12. Zhang X, Huang R, Gopalakrishnan S, Cao-Milán R, Rotello VM. Bioorthogonal nanozymes: progress towards therapeutic applications. Trends in Chemistry. 2019;1(1):90–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasan A, Nanakali NMQ, Salihi A, Rasti B, Sharifi M, Attar F, et al. Nanozyme-based sensing platforms for detection of toxic mercury ions: an alternative approach to conventional methods. Talanta. 2020;215:120939.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Wang L, Du D, Ni L, Pan J, Niu X. Emerging applications of nanozymes in environmental analysis: opportunities and trends. TrAC Trends Anal Chem. 2019;120.

  15. Huang L, Sun DW, Pu H, Wei Q. Development of nanozymes for food quality and safety detection: principles and recent applications. Compr Rev Food Sci Food Saf. 2019;18(5):1496–513.

    Article  PubMed  Google Scholar 

  16. Guo Y, Li J, Dong S. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sensors Actuators B Chem. 2011;160(1):295–300.

    Article  CAS  Google Scholar 

  17. Liu P, Wang Y, Han L, Cai Y, Ren H, Ma T, et al. Colorimetric assay of bacterial pathogens based on Co3O4 magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoretic chromatography. ACS Appl Mater Interfaces. 2020;12(8):9090–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wen Y, Yan L, Ling Y-C. The designing strategies of graphene-based peroxidase mimetic materials. SCIENCE CHINA Chem. 2017;61(3):266–75.

    Article  Google Scholar 

  19. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci. 2011;4(4):1113–32.

    Article  CAS  Google Scholar 

  21. Hu M, Yao Z, Wang X. Graphene-based nanomaterials for catalysis. Ind Eng Chem Res. 2017;56(13):3477–502.

    Article  CAS  Google Scholar 

  22. Wu K, Feng Y, Li Y, Li L, Liu R, Zhu L. S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose. Anal Bioanal Chem. 2020;412(22):5477–87.

    Article  CAS  PubMed  Google Scholar 

  23. Niyogi SBE, Itkis ME. Solution properties of graphite and graphene. J Am Chem Soc. 2006;128(24):7720–1.

    Article  CAS  PubMed  Google Scholar 

  24. Lu L-M, Qiu X-L, Zhang X-B, Shen G-L, Tan W, Yu R-Q. Supramolecular assembly of enzyme on functionalized graphene for electrochemical biosensing. Biosens Bioelectron. 2013;45:102–7.

    Article  CAS  PubMed  Google Scholar 

  25. Khan M, Al-Marri AH, Khan M, Shaik MR, Mohri N, Adil SF, et al. Green approach for the effective reduction of graphene oxide using Salvadora persica L. Root (Miswak) Extract. Nanoscale Res Lett. 2015;10(1):987.

    Article  PubMed  Google Scholar 

  26. Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 2010;4(4):2429–37.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Yang K, Feng L, Liu Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon. 2011;49(12):4040–9.

    Article  CAS  Google Scholar 

  28. Shao CS, Zhou XH, Zheng XX, Huang Q. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. J Ethnopharmacol. 2020;262:113213.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Zhang Q, Zhang Q, He H, Chen Z, Zhao Y, et al. Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy. PLoS One. 2018;13(9):e0204266.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma Y, He H, Wu J, Wang C, Chao K, Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Sci Rep. 2018;8(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang S, Zhang D, Sysoev VI, Sedelnikova OV, Asanov IP, Katkov MV, et al. Wrinkled reduced graphene oxide nanosheets for highly sensitive and easy recoverable NH3 gas detector. RSC Adv. 2014;4(87):46930–3.

    Article  CAS  Google Scholar 

  32. Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem. 2010;20(4):743–8.

    Article  CAS  Google Scholar 

  33. Shen Y, Zhang H-B, Zhang H, Ren W, Dasari A, Tang G-S, et al. Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon. 2013;56:132–8.

    Article  CAS  Google Scholar 

  34. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L, et al. Chem Commun (Camb). 2009;(26):3880–2.

  35. Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53(3):1126–30.

    Article  CAS  Google Scholar 

  36. Tran DNH, Kabiri S, Losic D. A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon. 2014;76:193–202.

    Article  CAS  Google Scholar 

  37. Ye M, Qiu T, Peng W, Chen W-X, Ye Y-W, Lin Y-R. Purification, characterization and hypoglycemic activity of extracellular polysaccharides from Lachnum calyculiforme. Carbohydr Polym. 2011;86(1):285–90.

    Article  CAS  Google Scholar 

  38. Chen Y, Xie M-Y, Nie S-P, Li C, Wang Y-X. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 2008;107(1):231–41.

    Article  CAS  Google Scholar 

  39. Feng J, Feng N, Tang QJ, Liu YF, Yang Y, Liu F, et al. Optimization of Ganoderma lucidum polysaccharides fermentation process for large-scale production. Appl Biochem Biotechnol. 2019;189(3):972–86.

    Article  CAS  PubMed  Google Scholar 

  40. Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM. Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydr Polym. 2014;111:936–46.

    Article  CAS  PubMed  Google Scholar 

  41. Yin R, Shen P, Lu Z. A green approach for the reduction of graphene oxide by the ultraviolet/sulfite process. J Colloid Interface Sci. 2019;550:110–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon. 2012;50(3):914–21.

    Article  CAS  Google Scholar 

  43. Hu Y, He L, Ding J, Sun D, Chen L, Chen X. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydr Polym. 2016;144:223–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Ge J, Zhang L, Li Z, Zhou S, Qu L. PSS-GN nanocomposites as highly-efficient peroxidase mimics and their applications in colorimetric detection of glucose in serum. RSC Adv. 2015;5(110):90400–7.

    Article  CAS  Google Scholar 

  46. Boruah PK, Das MR. Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J Hazard Mater. 2020;385:121516.

    Article  CAS  PubMed  Google Scholar 

  47. Sur UKSA, Datta A. Synthesis and characterization of stable aqueous dispersions of graphene. Bull Mater Sci. 2016;39(1):159–65.

    Article  CAS  Google Scholar 

  48. Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, et al. S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces. 2017;9(1):398–405.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Lv X, Hou M, Shi Y, Guo W. Selective fluorescence detection of cysteine over homocysteine and glutathione based on a cysteine-triggered dual Michael addition/retro-aza-aldol cascade reaction. Anal Chem. 2015;87(22):11475–83.

    Article  CAS  PubMed  Google Scholar 

  50. Yao G, Huang Q. DFT and SERS study of l-cysteine adsorption on the surface of gold nanoparticles. J Phys Chem C. 2018;122(27):15241–51.

    Article  CAS  Google Scholar 

  51. Singh M, Weerathunge P, Liyanage PD, Mayes E, Ramanathan R, Bansal V. Competitive inhibition of the enzyme-mimic activity of Gd-based nanorods toward highly specific colorimetric sensing of l-cysteine. Langmuir. 2017;33(38):10006–15.

    Article  CAS  PubMed  Google Scholar 

  52. Wu X-Q, Xu Y, Chen Y-L, Zhao H, Cui H-J, Shen J-S, et al. Peroxidase-like activity of ferric ions and their application to cysteine detection. RSC Adv. 2014;4(110):64438–42.

    Article  CAS  Google Scholar 

  53. Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T. Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B. 2014;2(36):6097–105.

    Article  CAS  PubMed  Google Scholar 

  54. Yang Z, Zhu Y, Nie G, Li M, Wang C, Lu X. FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of l-cysteine. Dalton Trans. 2017;46(28):8942–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bouri M, Salghi R, Ríos A, Zougagh M. Fluorescence determination of L-cysteine in wound dressings by fluoroscein coated gold nanoparticles. Anal Lett. 2015;49(8):1221–32.

    Article  Google Scholar 

  56. Dong W, Wang R, Gong X, Liang W, Dong C. A far-red FRET fluorescent probe for ratiometric detection of l-cysteine based on carbon dots and N-acetyl-l-cysteine-capped gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2019;213:90–6.

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Chen T, Wu X, Yang G. CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sensors Actuators B Chem. 2019;279:374–84.

    Article  CAS  Google Scholar 

  58. Gao M, Lu X, Chen S, Tian D, Zhu Y, Wang C. Enhanced peroxidase-like activity of Mo6+-doped Co3O4 nanotubes for ultrasensitive and colorimetric l-cysteine detection. ACS Applied Nano Materials. 2018;1(9):4703–15.

    Article  CAS  Google Scholar 

  59. Eyer PPD. Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman’s reagent. Anal Biochem. 1986;153(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Liu Y, Ding F, Zhu X, Yang L, Zou P, et al. Colorimetric determination of glutathione in human serum and cell lines by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite. Anal Bioanal Chem. 2018;410(20):4805–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Anhui Provincial Key Research and Development Plans (202004i07020014, 1704a0902017) and National Natural Science Foundation of China (11635013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, Y., Xu, D. et al. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine. Anal Bioanal Chem 413, 4013–4022 (2021). https://doi.org/10.1007/s00216-021-03352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03352-1

Keywords

Navigation