Skip to main content
Log in

Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide–modified glassy carbon electrode

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L−1, linear range from 3.0 to 50 μmol L−1 and 1.0 to 50 μmol L−1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abukhadra MR, Helmy A, Sharaf MF, El-Meligy MA, Ahmed Soliman AT. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source. J Env Manag. 2020;271:111019. https://doi.org/10.1016/j.jenvman.2020.111019.

    Article  CAS  Google Scholar 

  2. de Farias DM, de Faria LV, Lisboa TP, Matos MAC, Muñoz RAA, Matos RC. Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes. J Solid State Electrochem. 2020;24(5):1165–73. https://doi.org/10.1007/s10008-020-04589-z.

    Article  CAS  Google Scholar 

  3. de Faria LV, Lisboa TP, Alves GF, de Farias DM, Matos MAC, Muñoz RAA, et al. Electrochemical study of different sensors for simple and fast quantification of ciprofloxacin in pharmaceutical formulations and bovine milk. Electroanal. 2020;32(10):2266–72. https://doi.org/10.1002/elan.202060211.

    Article  CAS  Google Scholar 

  4. Sinha RK, Biswas P. Structural elucidation of levofloxacin and ciprofloxacin using density functional theory and Raman spectroscopy with inexpensive lab-built setup. J Molec Struc. 2020;1222:128946. https://doi.org/10.1016/j.molstruc.2020.128946.

    Article  CAS  Google Scholar 

  5. Adhikari S, Mandal S, Kim D-H. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem Eng J. 2019;373:31–43. https://doi.org/10.1016/j.cej.2019.05.017.

    Article  CAS  Google Scholar 

  6. Ghanbari MH, Khoshroo A, Sobati H, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. An electrochemical sensor based on poly (l-cysteine)@AuNPs @ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem J. 2019;147:198–206. https://doi.org/10.1016/j.microc.2019.03.016.

    Article  CAS  Google Scholar 

  7. Rudnicki K, Sipa K, Brycht M, Borgul P, Skrzypek S, Poltorak L. Electrochemical sensing of fluoroquinolone antibiotics. TrAC Trends in Anal Chem. 2020;128:115907. https://doi.org/10.1016/j.trac.2020.115907.

    Article  CAS  Google Scholar 

  8. Wang A, Chen Z, Zheng Z, Xu H, Wang H, Hu K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem Eng J. 2020;379:122340. https://doi.org/10.1016/j.cej.2019.122340.

    Article  CAS  Google Scholar 

  9. Wong A, Santos AM, Fatibello-Filho O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens Actuat B: Chem. 2018;255:2264–73. https://doi.org/10.1016/j.snb.2017.09.020.

    Article  CAS  Google Scholar 

  10. Cesarino V, Cesarino I, Moraes FC, Machado SAS, Mascaro LH. Carbon nanotubes modified with SnO2 rods for levofloxacin detection. J Braz Chem Soc. 2014;25:502–8.

    CAS  Google Scholar 

  11. Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS. Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanal. 2013;25(9):2092–9. https://doi.org/10.1002/elan.201300261.

    Article  CAS  Google Scholar 

  12. Vella J, Busuttil F, Bartolo NS, Sammut C, Ferrito V, Serracino-Inglott A, et al. A simple HPLC–UV method for the determination of ciprofloxacin in human plasma. J Chromatogr B. 2015;989:80–5. https://doi.org/10.1016/j.jchromb.2015.01.006.

    Article  CAS  Google Scholar 

  13. Locatelli M, Ciavarella MT, Paolino D, Celia C, Fiscarelli E, Ricciotti G, et al. Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J Chromatogr A. 2015;1419:58–66. https://doi.org/10.1016/j.chroma.2015.09.075.

    Article  CAS  PubMed  Google Scholar 

  14. Tsai Y-H, Bair M-J, Hu C-C. Determination of levofloxacin in human urine with capillary electrophoresis and fluorescence detector. J Chin Chem Soc. 2007;54(4):991–5. https://doi.org/10.1002/jccs.200700142.

    Article  CAS  Google Scholar 

  15. Xu X, Liu L, Jia Z, Shu Y. Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking-sweeping technique. Food Chem. 2015;176:219–25. https://doi.org/10.1016/j.foodchem.2014.12.054.

    Article  CAS  PubMed  Google Scholar 

  16. Lamarca RS, Lima Gomes PCF. A low cost method for carbamazepine, ciprofloxacin and norfloxacin determination in pharmaceutical formulations based on spot-test and smartphone images. Microchem J. 2020;152:104297. https://doi.org/10.1016/j.microc.2019.104297.

    Article  CAS  Google Scholar 

  17. El-Yazbi AF, Khamis E, Youssef RM, El-Sayed M, Aboukhalil FM. Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon. 2020;6:e04819.

    Article  Google Scholar 

  18. Tan X, Li Q, Yang J. A simple fluorescence method detection levofloxacin in milk based on GSH-CdTe QDs. J Molec Struc. 2020;1201:127175. https://doi.org/10.1016/j.molstruc.2019.127175.

    Article  CAS  Google Scholar 

  19. Madrakian T, Maleki S, Afkhami A. Surface decoration of cadmium-sulfide quantum dots with 3-mercaptopropionic acid as a fluorescence probe for determination of ciprofloxacin in real samples. Sens Actuat B: Chem. 2017;243:14–21. https://doi.org/10.1016/j.snb.2016.11.106.

    Article  CAS  Google Scholar 

  20. Szerkus O, Jacyna J, Gibas A, Sieczkowski M, Siluk D, Matuszewski M, et al. Robust HPLC–MS/MS method for levofloxacin and ciprofloxacin determination in human prostate tissue. J Pharm Biomed Anal. 2017;132:173–83. https://doi.org/10.1016/j.jpba.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  21. Chauhan R, Gill AAS, Nate Z, Karpoormath R. Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly(phenol red) modified glassy carbon electrode. J Electroanal Chem. 2020;871:114254. https://doi.org/10.1016/j.jelechem.2020.114254.

    Article  CAS  Google Scholar 

  22. Pollap A, Baran K, Kuszewska N, Kochana J. Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J Electroanal Chem. 2020;878:114574. https://doi.org/10.1016/j.jelechem.2020.114574.

    Article  CAS  Google Scholar 

  23. Rkik M, Brahim MB, Samet Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode. J Electroanal Chem. 2017;794:175–81. https://doi.org/10.1016/j.jelechem.2017.04.015.

    Article  CAS  Google Scholar 

  24. Wang F, Zhu L, Zhang J. Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode. Sens Actuat B: Chem. 2014;192:642–7. https://doi.org/10.1016/j.snb.2013.11.037.

    Article  CAS  Google Scholar 

  25. Alves GF, Lisboa TP, de Faria LV, de Farias DM, Matos MAC, Matos RC. Disposable pencil graphite electrode for ciprofloxacin determination in pharmaceutical formulations by square wave voltammetry. Electroanal. 2021;33(2):543–9. https://doi.org/10.1002/elan.202060432.

    Article  CAS  Google Scholar 

  26. Montes RHO, Marra MC, Rodrigues MM, Richter EM, Muñoz RAA. Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electroanal. 2014;26(2):432–8. https://doi.org/10.1002/elan.201300474.

    Article  CAS  Google Scholar 

  27. Fotouhi L, Alahyari M. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Coll Surf B: Biointerf. 2010;81(1):110–4. https://doi.org/10.1016/j.colsurfb.2010.06.030.

    Article  CAS  Google Scholar 

  28. Rowley-Neale SJ, Randviir EP, Abo Dena AS, Banks CE. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl Materials Today. 2018;10:218–26. https://doi.org/10.1016/j.apmt.2017.11.010.

    Article  Google Scholar 

  29. de Faria LV, Lisboa TP, de Farias DM, Araujo FM, Machado MM, de Sousa RA, et al. Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chem. 2020;319:126509. https://doi.org/10.1016/j.foodchem.2020.126509.

    Article  CAS  PubMed  Google Scholar 

  30. de Faria LV, Lisboa TP, Azevedo GC, Sousa RA, Costa Matos MA, Muñoz RAA, et al. Chemically-reduced graphene oxide sensor for dipyrone quantification in pharmaceutical samples using amperometric detection. Electroanal. 2019;31(4):646–51. https://doi.org/10.1002/elan.201800784.

    Article  CAS  Google Scholar 

  31. Faria LV, Lima AP, Araújo FM, Lisboa TP, Matos MAC, Munoz RAA, et al. High-throughput amperometric determination of tetracycline residues in milk and quality control of pharmaceutical formulations: flow-injection versus batch-injection analysis. Anal Methods. 2019;11(41):5328–36. https://doi.org/10.1039/C9AY01759C.

    Article  CAS  Google Scholar 

  32. Bukkitgar SD, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM. Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem. 2020;23:100183. https://doi.org/10.1016/j.flatc.2020.100183.

    Article  CAS  Google Scholar 

  33. Martins TS, Bott-Neto JL, Oliveira ON Jr, Machado SAS. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples. J Electroanal Chem. 2021;882:114985. https://doi.org/10.1016/j.jelechem.2021.114985.

    Article  CAS  Google Scholar 

  34. Materón EM, Wong A, Freitas TA, Faria RC, Oliveira ON. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. J Pharm Anal. 2021. https://doi.org/10.1016/j.jpha.2021.03.004.

  35. Santos Pereira LN, da Silva IS, Araújo TP, Tanaka AA, Angnes L. Fast quantification of α-lipoic acid in biological samples and dietary supplements using batch injection analysis with amperometric detection. Talanta. 2016;154:249–54. https://doi.org/10.1016/j.talanta.2016.03.046.

    Article  CAS  PubMed  Google Scholar 

  36. Oliveira GK, Tormin TF, Sousa RM, de Oliveira A, de Morais SA, Richter EM, et al. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chem. 2016;192:691–7. https://doi.org/10.1016/j.foodchem.2015.07.064.

    Article  CAS  PubMed  Google Scholar 

  37. Veloso WB, Ribeiro GAC, da Rocha CQ, Tanaka AA, da Silva IS, Dantas LMF. Flow-through amperometric determination of ampicillin using a copper electrode in a batch injection analysis system. Measurement. 2020;155:107516. https://doi.org/10.1016/j.measurement.2020.107516.

    Article  Google Scholar 

  38. Rocha DP, Cardoso RM, Tormin TF, de Araujo WR, Munoz RAA, Richter EM, et al. Batch-injection analysis better than ever: new materials for improved electrochemical detection and on-site applications. Electroanal. 2018;30(7):1386–99. https://doi.org/10.1002/elan.201800042.

    Article  CAS  Google Scholar 

  39. Wang J, Taha Z. Batch injection with potentiometric detection. Anal Chim Acta. 1991;252(1):215–21. https://doi.org/10.1016/0003-2670(91)87218-V.

    Article  CAS  Google Scholar 

  40. Laube N, Mohr B, Hesse A. Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Crys Growth. 2001;233(1):367–74. https://doi.org/10.1016/S0022-0248(01)01547-0.

    Article  CAS  Google Scholar 

  41. Faria LV, Pereira JFS, Azevedo GC, Matos MAC, Munoz RAA, Matos RC. Square-wave voltammetry determination of ciprofloxacin in pharmaceutical formulations and milk using a reduced graphene oxide sensor. J Braz Chem Soc. 2019;30:1947–54.

    CAS  Google Scholar 

  42. Rocha DP, Dornellas RM, Cardoso RM, Narciso LCD, Silva MNT, Nossol E, et al. Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces. Sens Actuat B: Chem. 2018;254:701–8. https://doi.org/10.1016/j.snb.2017.07.070.

    Article  CAS  Google Scholar 

  43. Zhang X, Wei Y, Ding Y. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Anal Chim Acta. 2014;835:29–36. https://doi.org/10.1016/j.aca.2014.05.020.

    Article  CAS  PubMed  Google Scholar 

  44. Blokhina SV, Sharapova AV, Ol'khovich MV, Volkova ТV, Perlovich GL. Solubility, lipophilicity and membrane permeability of some fluoroquinolone antimicrobials. European J Pharm Sci. 2016;93:29–37. https://doi.org/10.1016/j.ejps.2016.07.016.

    Article  CAS  Google Scholar 

  45. Liu C, Xie D, Liu P, Xie S, Wang S, Cheng F, et al. Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Microchim Acta. 2018;186(1):21. https://doi.org/10.1007/s00604-018-3146-2.

    Article  CAS  Google Scholar 

  46. Jalal NR, Madrakian T, Afkhami A, Ghamsari M. Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples. J Electroanal Chem. 2019;833:281–9. https://doi.org/10.1016/j.jelechem.2018.12.004.

    Article  CAS  Google Scholar 

  47. Brett CMA, Brett AMO, Mitoseriu LC. Amperometric batch injection analysis: theoretical aspects of current transients and comparison with wall-jet electrodes in continuous flow. Electroanal. 1995;7(3):225–9. https://doi.org/10.1002/elan.1140070305.

    Article  CAS  Google Scholar 

  48. Commission E. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results Official Journal of the European Communities. 2002;3(036):493–521.

  49. Matos RC, Augelli MA, Lago CL, Angnes L. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Anal Chim Acta. 2000;404(1):151–7. https://doi.org/10.1016/S0003-2670(99)00674-1.

    Article  CAS  Google Scholar 

  50. da Silva VL, Cerqueira MRF, Lowinsohn D, Matos MAC, Matos RC. Amperometric detection of ascorbic acid in honey using ascorbate oxidase immobilised on amberlite IRA-743. Food Chem. 2012;133(3):1050–4. https://doi.org/10.1016/j.foodchem.2012.01.066.

    Article  CAS  Google Scholar 

  51. Zhang X, Zhang Y-C, Zhang J-W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta. 2016;161:567–73. https://doi.org/10.1016/j.talanta.2016.09.013.

    Article  CAS  PubMed  Google Scholar 

  52. Braga OC, Campestrini I, Vieira IC, Spinelli A. Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J Braz Chem Soc. 2010;21:813–20.

    Article  CAS  Google Scholar 

  53. Lima AB, de Oliveira FM, Guedes TJ, Sousa RMF, Munoz RAA, dos Santos WTP. Altered electrochemistry of oxcarbazepine on cathodically treated boron-doped diamond electrode: selective detection by pulsed amperometric detection coupled to flow-injection analysis. Electrochim Acta. 2018;260:564–70. https://doi.org/10.1016/j.electacta.2017.12.089.

    Article  CAS  Google Scholar 

  54. Vinay MM, Nayaka YA, Yatisha RO, Basavarajappa KV, Manjunatha P, Purushothama HT. Development of Azure-B modified pencil graphite electrode as an electrochemical sensor for the investigation of levofloxacin in pharmaceutical and biological samples. Chem Data Collec. 2020;28:100441. https://doi.org/10.1016/j.cdc.2020.100441.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by FAPEMIG (Research Support Foundation of the State of Minas Gerais) (process: APQ-00197-18), CNPq (National Council for Scientific and Technological Development, processes: 302685/2019-7 and 307271/2017-0), CAPES (Coordination for the Improvement of Higher Education Personnel, financial code 001), and PROPESQ/UFJF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucas Vinícius de Faria or Renato Camargo Matos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria, L.V., de Farias, D.M., Lisboa, T.P. et al. Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide–modified glassy carbon electrode. Anal Bioanal Chem 414, 5309–5318 (2022). https://doi.org/10.1007/s00216-021-03342-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03342-3

Keywords

Navigation