Skip to main content
Log in

Highly selective fluorescent peptide–based chemosensors for aluminium ions in aqueous solution

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two novel fluorescent peptide–based chemosensors, including A (2-amino-benzoyl-Ser-Glu-Glu-NH2) and B (2-amino-benzoyl-Ala-Glu-Pro-Glu-Ala-Glu-Pro-NH2) were synthesized and characterized by nuclear magnetic resonance (NMR) spectra. These fluorescent probes exhibited excellent selective and sensitive responses to Al3+ ions over other metal ions in aqueous buffered solutions. The limits of detection for both chemosensors towards the Al3+ ions were in the order of ∼10−7 M (A: 155 nM and B: 195 nM), which clearly indicates that these probes have significant potential for biological applications. They also displayed high binding affinity (1.3029 × 104 M−1 and 1.7586 × 104 M−1 relevant to A and B respectively). These two chemosensors are great analytical probes that produce turn-on responses upon binding to Al3+ ions through an intramolecular charge transfer (ICT) mechanism. In addition, the application of both chemosensors was examined over a wide range of pH. The fluorescent peptide–based probes and Al3+ form a 1:1 coordination complex according to the ESI-MS and Job’s plot analysis. Notably, upon addition of Al3+ to these chemosensors, a fluorescence enhancement of approximately 8-fold was observed and the binding mode was determined using NMR titration and fluorescence emission data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable

References

  1. Liu Y, Bi A, Gao T, Cao X, Gao F, Rong P, et al. A novel self-assembled nanoprobe for the detection of aluminum ions in real water samples and living cells. Talanta. 2019. https://doi.org/10.1016/j.talanta.2018.09.104.

  2. Jisha B, Resmi M, Maya R, Varma RL. Colorimetric detection of Al (III) ions based on triethylene glycol appended 8-propyloxy quinoline ester. Tetrahedron Lett. 2013. https://doi.org/10.1016/j.tetlet.2013.05.134.

  3. In B, Hwang GW, Lee KH. Highly sensitive and selective detection of Al (III) ions in aqueous buffered solution with fluorescent peptide-based sensor. Bioorg Med Chem Lett. 2016. https://doi.org/10.1016/j.bmcl.2016.07.073.

  4. Inan-Eroglu E, Ayaz A. Is aluminum exposure a risk factor for neurological disorders? J Res Med Sci. 2018. https://doi.org/10.4103/jrms.JRMS_921_17.

  5. Kilyén M, Forgo P, Lakatos A, Dombi G, Kiss T, Kotsakis N, et al. Interaction of Al (III) with the peptides AspAsp and AspAspAsp. J Inorg Biochem. 2003. https://doi.org/10.1016/S0162-0134(03)00027-8.

  6. Walton J. An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem. 2007. https://doi.org/10.1016/j.jinorgbio.2007.06.001.

  7. Banerjee S, Brandão P, Saha A. A robust fluorescent chemosensor for aluminium ion detection based on a Schiff base ligand with an azo arm and application in a molecular logic gate. RSC Adv. 2016. https://doi.org/10.1039/C6RA21217D.

  8. Nayak P. Aluminum: impacts and disease. Environ Res. 2002;89. https://doi.org/10.1006/enrs.2002.4352.

  9. Platteau O, Carrillo M. Determination of metallic elements in crude oil-water emulsions by flame AAS. Fuel. 1995. https://doi.org/10.1016/0016-2361(94)00002-9.

  10. Gupta VK, Singh L, Singh R, Upadhyay N, Kaur S, Sethi B. A novel copper (II) selective sensor based on dimethyl 4, 4′(o-phenylene) bis (3-thioallophanate) in PVC matrix. J Mol Liq. 2012. https://doi.org/10.1016/j.molliq.2012.07.016.

  11. Gupta VK, Goyal RN, Sharma RA. Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta. 2009. https://doi.org/10.1016/j.aca.2009.05.031.

  12. Yola ML, Gupta VK, Eren T, Şen AE, Atar N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta. 2014. https://doi.org/10.1016/j.electacta.2013.12.086.

  13. Frankowski, M. Zioła-Frankowska, A. Kurzyca, I. Novotný, K. Vaculovič, T. Kanický, V. Siepak M. Siepak, Environ Monit Assess 2011. https://doi.org/10.1007/s10661-010-1859-8.

  14. Gupta VK, Mergu N, Kumawat LK, Singh AK. Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sensors Actuators B Chem. 2015. https://doi.org/10.1016/j.snb.2014.10.044.

  15. Wang P, Liu L, Zhou P, Wu W, Wu J, Liu W, et al. A peptide-based fluorescent chemosensor for multianalyte detection. Biosens Bioelectron. 2015. https://doi.org/10.1016/j.bios.2015.04.094.

  16. Divya D, Thennarasu S. A novel isatin-based probe for ratiometric and selective detection of Hg2+ and Cu2+ ions present in aqueous and environmental samples. Spectrochim Acta A Mol Biomol Spectrosc. 2020. https://doi.org/10.1016/j.saa.2020.118796.

  17. Lim MH, Lippard SJ. Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res. 2007. https://doi.org/10.1021/ar950149t.

  18. Wang P, Wu J, Su P, Xu C, Ge Y, Liu D, et al. Fluorescence “on–off–on” peptide-based chemosensor for the selective detection of Cu 2+ and S 2− and its application in living cell bioimaging. Dalton Trans. 2016. https://doi.org/10.1039/C6DT03330J.

  19. Neupane LN, Park JY, Park JH, Lee KH. Turn-on fluorescent chemosensor based on an amino acid for Pb (II) and Hg (II) ions in aqueous solutions and role of tryptophan for sensing. Org Lett. 2013. https://doi.org/10.1021/ol3029516.

  20. Wu J, Zou Y, Li C, Sicking W, Piantanida I, Yi T, et al. A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc. 2012. https://doi.org/10.1021/ja2103845.

  21. Joshi BP, Cho WM, Kim J, Yoon J, Lee KH. Design, synthesis, and evaluation of peptidyl fluorescent probe for Zn2+ in aqueous solution. Bioorg Med Chem Lett. 2007. https://doi.org/10.1016/j.bmcl.2007.10.008.

  22. Liao C, Li F, Huang S, Zheng B, Du J, Xiao D. A specific and biocompatible fluorescent sensor based on the hybrid of GFP chromophore and peptide for HSA detection. Biosens Bioelectron. 2016. https://doi.org/10.1016/j.bios.2016.07.002.

  23. Ocain TD, Rich DH. alpha.-Keto amide inhibitors of aminopeptidases. J Med Chem. 1992. https://doi.org/10.1021/jm00081a005.

  24. Gupta VK, Mergu N, Kumawat LK, Singh AK. A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta. 2015. https://doi.org/10.1016/j.talanta.2015.05.053.

  25. Yang X, Zhang Q, Li L, Shen R. Structural features of aluminium (III) complexes with bioligands in glutamate dehydrogenase reaction system–a review. J Inorg Biochem. 2007. https://doi.org/10.1016/j.jinorgbio.2007.06.030.

  26. Yang MH, Thirupathi P, Lee KH. Selective and sensitive ratiometric detection of Hg (II) ions using a simple amino acid based sensor. Org Lett. 2011. https://doi.org/10.1021/ol201683t.

  27. Badugu R, Lakowicz JR, Geddes CD. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. Bioorg Med Chem Lett. 2005. https://doi.org/10.1021/ja044421i.

  28. Hossain SM, Singh K, Lakma A, Pradhan RN, Singh AK. A Schiff base ligand of coumarin derivative as an ICT-based fluorescence chemosensor for Al3+. Sensors Actuators B Chem. 2017. https://doi.org/10.1016/j.snb.2016.08.093.

  29. Xu Z, Xiao Y, Qian X, Cui J, Cui D. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett. 2005. https://doi.org/10.1021/ol0473445.

  30. Jiao Y, Zhu B, Chen J, Duan X. Fluorescent sensing of fluoride in cellular system. Theranostics. 2015. https://doi.org/10.7150/thno.9860.

  31. He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016. https://doi.org/10.1039/C6CS00413J.

  32. Gupta A, Kumar N. A review of mechanisms for fluorescent “turn-on” probes to detect Al 3+ ions. RSC Adv. 2016. https://doi.org/10.1039/C6RA23682K.

  33. Cosnard F, Wintgens V. A new fluoroionophore derived from 4-amino-N-methyl-1, 8-naphthalimide. Tetrahedron Lett. 1998. https://doi.org/10.1016/S0040-4039(98)00302-5.

  34. Langelaan DN, Wieczorek M, Blouin C, Rainey JK. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model. 2010. https://doi.org/10.1021/ci100324n.

  35. Casteels-Josson K, Capaci T, Casteels P, Tempst P. Apidaecinmultipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J. 1993. https://doi.org/10.1002/j.1460-2075.1993.tb05801.x.

  36. Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M. Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des. 2002. https://doi.org/10.2174/1381612023395394.

  37. Raida M, Passow H. Enhancement of divalent anion transport across the human red blood cell membrane by the water-soluble dansyl chloride derivative 2-(N-piperidine) ethylamine-1-naphtyl-5-sulfonylchloride (PENS-Cl). Biochim Biophys Acta (BBA)-Biomembranes. 1985. https://doi.org/10.1016/0005-2736(85)90255-X.

  38. Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK. Removal of basic dye auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015. https://doi.org/10.1039/C4RA15637D.

  39. Li C-R, Qin J-C, Wang G-Q, Wang B-D, Yang Z-Y. A novel pyrazine derivative as a “turn on” fluorescent sensor for the highly selective and sensitive detection of Al3+. Anal Methods. 2015. https://doi.org/10.1039/C5AY00200A.

  40. Yu S-Y, Wu S-P. A highly selective turn-on fluorescence chemosensor for Hg (II) and its application in living cell imaging. Sensors Actuators B Chem. 2014. https://doi.org/10.1016/j.snb.2014.04.077.

  41. Gupta VK, Karimi-Maleh H, Sadegh R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int J Electrochem Sci. 2015;10:303–16.

    Google Scholar 

  42. Pearson RG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ. 1968. https://doi.org/10.1021/ed045p581.

  43. Klopman G. Chemical reactivity and the concept of charge-and frontier-controlled reactions. Bioorg Med Chem Lett. 1968. https://doi.org/10.1021/ja01004a002.

  44. Kang T, Wang H, Wang X, Feng L. A facile Zn (II) probe based on intramolecular charge transfer with fluorescence red-shift. Microchem J. 2019. https://doi.org/10.1016/j.microc.2019.05.035.

  45. Li X, Sun S, Kim IJ, Son YA. Significant emission red-shift of BODIPY derivatives with strong electron-acceptor attached. Mol Cryst Liq Cryst. 2017. https://doi.org/10.1080/15421406.2017.1358018.

  46. Bhatta SR, Mondal B, Vijaykumar G, Thakur A. ICT–isomerization-induced turn-on fluorescence probe with a large emission shift for mercury ion: application in combinational molecular logic. Inorg Chem. 2017. https://doi.org/10.1021/acs.inorgchem.7b01304.

  47. Neupane LN, Hwang GW, Lee KH. Tuning of the selectivity of fluorescent peptidyl bioprobe using aggregation induced emission for heavy metal ions by buffering agents in 100% aqueous solutions. Biosens Bioelectron. 2017. https://doi.org/10.1016/j.bios.2017.02.001.

  48. Ali I, Jain CK. Advances in arsenic speciation techniques. Int J Environ Anal Chem. 2004. https://doi.org/10.1080/03067310410001729637.

  49. Srivastava SK, Gupta VK, Jain SA. PVC-based benzo-15-crown-5 membrane sensor for cadmium. Electroanalysis. 1996. https://doi.org/10.1002/elan.1140081017.

  50. Gupta VK, Nayak A, Agarwal S, Tyagi I. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci. 2014. https://doi.org/10.1016/j.jcis.2013.11.067.

  51. Yang W, Chen X, Su H, Fang W, Zhang Y. The fluorescence regulation mechanism of the paramagnetic metal in a biological HNO sensor. Chem Commun. 2015;51:9616. https://doi.org/10.1039/C5CC00787A.

    Article  CAS  Google Scholar 

  52. Panda S, Pati PB, Zade SS. Twisting (conformational changes)-based selective 2D chalcogeno podand fluorescent probes for Cr (III) and Fe (II). Chem Commun. 2011;47:4174. https://doi.org/10.1039/C1CC10425J.

    Article  CAS  Google Scholar 

  53. Tan SS, Kim SJ, Kool ET. Differentiating between fluorescence-quenching metal ions with polyfluorophore sensors built on a DNA backbone. J Am Chem Soc. 2011;133:2664. https://doi.org/10.1021/ja109561e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anand T, Sivaraman G, Mahesh A, Chellappa D. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging. Anal Chim Acta. 2015;853:596. https://doi.org/10.1016/j.aca.2014.11.011.

    Article  CAS  PubMed  Google Scholar 

  55. Wu Z, Zhang Y, Shi Ma J, Yang G. Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement. Inorg Chem. 2006;45(8):3140–2. https://doi.org/10.1021/ic051589b.

    Article  CAS  PubMed  Google Scholar 

  56. Varnes AW, Dodson RB, Wehry EL. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies. J Am Chem Soc. 1972;94:946–50. https://doi.org/10.1021/ja00758a037.

    Article  CAS  PubMed  Google Scholar 

  57. Shree GJ, Sivaraman G, Siva A, Chellappa D. Anthracene-and pyrene-bearing imidazoles as turn-on fluorescent chemosensor for aluminum ion in living cells. Dyes Pigments. 2019. https://doi.org/10.1016/j.dyepig.2018.11.061.

  58. Azadbakht R, Rashidi S. A new fluorescent chemosensor for Al3+ ion based on Schiff base naphthalene derivatives. Spectrochim Acta A Mol Biomol Spectrosc. 2014. https://doi.org/10.1016/j.saa.2014.02.101.

  59. Wang P, Wu J, Zhou P, Liu W, Tang Y. A novel peptide-based fluorescent chemosensor for measuring zinc ions using different excitation wavelengths and application in live cell imaging. J Mater Chem B. 2015. https://doi.org/10.1039/C5TB00142K.

  60. Lee S, Sung DB, Kang S, Parameswaran S, Choi JH, Lee JS, et al. Development of human serum albumin selective fluorescent probe using thieno[3,2-b]pyridine-5(4H)-one fluorophore derivatives. Sensors. 2019. https://doi.org/10.3390/s19235298.

  61. Zhang Y, Guan L, Yu H, Yan Y, Du L, Liu Y, et al. Reversible fluorescent probe for selective detection and cell imaging of oxidative stress indicator bisulfite. Anal Chem. 2016. https://doi.org/10.1021/acs.analchem.6b00061.

  62. Koide Y, Kawaguchi M, Urano Y, Hanaoka K, Komatsu T, Abo M, et al. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te–rhodamine. Chem Commun. 2012. https://doi.org/10.1039/C2CC18011A.

  63. Kontoghiorghes G. Chemical, pharmacological, toxicological and therapeutic advances of deferiprone (L1) and other iron and aluminium chelators. Arch Toxicol Suppl. 1996. https://doi.org/10.1007/978-3-642-61105-6_21.

  64. Su P, Zhu Z, Wang J, Cheng B, Wu W, Iqbal K, et al. A biomolecule-based fluorescence chemosensor for sequential detection of Ag+ and H2S in 100% aqueous solution and living cells. Sensors Actuators B Chem. 2018;273. https://doi.org/10.1016/j.snb.2018.06.037.

  65. Zhang S, Sun T, Xiao D, Yuan F, Li T, Wang E, et al. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3+ and its practical application. Spectrochim Acta A Mol Biomol Spectrosc. 2018;189. https://doi.org/10.1016/j.saa.2017.09.001.

  66. Ding W-H, Wang D, Zheng X-J, Ding W-J, Zheng J-Q, Mu W-H, et al. A turn-on fluorescence chemosensor for Al3+, F and CN ions, and its application in cell imaging. Sensors Actuators B Chem. 2015;209. https://doi.org/10.1016/j.snb.2014.11.144.

Download references

Acknowledgements

We gratefully acknowledge the Iran National Science Foundation (INSF) for financial support.

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Sorour Ramezanpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanpour, S., Barzinmehr, H., Shiri, P. et al. Highly selective fluorescent peptide–based chemosensors for aluminium ions in aqueous solution. Anal Bioanal Chem 413, 3881–3891 (2021). https://doi.org/10.1007/s00216-021-03339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03339-y

Keywords

Navigation