Skip to main content
Log in

Green microfluidic liquid-phase microextraction of polar and non-polar acids from urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, hippuric acid (log P = 0.5), anthranilic acid (log P = 1.3), ketoprofen (log P = 3.6), and naproxen (log P = 3.0) were simultaneously extracted by a green microfluidic device based on the principles of liquid-phase microextraction (LPME). Different deep eutectic solvents (DESs) were investigated as supported liquid membrane (SLM), and a mixture of camphor and menthol as eutectic solvents in the molar ratio 1:1 was found to be highly efficient for the simultaneous extraction of non-polar and polar acidic drugs. LPME was conducted for 6 min per sample. Urine sample was delivered to the system at 1 μL min−1, and target analytes were extracted exhaustively (75–100% recovery) across the DES SLM, and into pure aqueous phosphate buffer pH 11.0 delivered as acceptor at 1 μL min−1. The acceptor was analyzed with liquid chromatography-UV detection. Interestingly, the DES enabled extraction of both the polar and non-polar model analytes at the same time; all chemicals were green and non-hazardous, and the chemical waste was less than 1 mg per sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergaard S. On-chip electro membrane extraction. Microfluid Nanofluid. 2010;9:881–8.

    Article  CAS  Google Scholar 

  2. Sikanen T, Pedersen-Bjergaard S, Jensen H, Kostiainen R, Rasmussen KE, Kotiaho T. Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications. Anal Chim Acta. 2010;658:133–40.

    Article  CAS  Google Scholar 

  3. Asl YA, Yamini Y, Seidi S. Development of a microfluidic-chip system for liquid–phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs. Talanta. 2016;160:592–9.

    Article  CAS  Google Scholar 

  4. Petersen NJ, Foss ST, Jensen H, Hansen SH, Skonberg C, Snakenborg D, et al. On-chip electro membrane extraction with online ultraviolet and mass spectrometric detection. Anal Chem. 2011;83:44–51.

    Article  CAS  Google Scholar 

  5. Petersen NJ, Pedersen JS, Poulsen NN, Jensen H, Skonberg C, Hansen SH, et al. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry. Analyst. 2012;137:3321–7.

    Article  CAS  Google Scholar 

  6. Wang X, Saridara C, Mitra S. Microfluidic supported liquid membrane extraction. Anal Chim Acta. 2005;543:92–8.

    Article  CAS  Google Scholar 

  7. Ramos Payán M. Liquid - phase microextraction and electromembrane extraction in millifluidic devices: a tutorial. Anal Chim Acta. 2019;1080:12–21.

    Article  Google Scholar 

  8. Seidi S, Yamini Y, Rezazadeh M, Esrafili A. Low-voltage electrically-enhanced microextraction as a novel technique for simultaneous extraction of acidic and basic drugs from biological fluids. J Chromatogr A. 2012;1243:6–13.

    Article  CAS  Google Scholar 

  9. Huang C, Seip KF, Gjelstad A, Shen X, Pedersen-Bjergaard S. Combination of electromembrane extraction and liquid-phase microextraction in a single step: simultaneous group separation of acidic and basic drugs. Anal Chem. 2015;87:6951–7.

    Article  CAS  Google Scholar 

  10. Karami M, Yamini Y. On-disc electromembrane extraction-dispersive liquid-liquid microextraction: a fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS. Anal Chim Acta. 2020;1105:95–104.

    Article  CAS  Google Scholar 

  11. Vakh C, Likanov G, Bulatov A. Stir flat sheet membrane liquid phase microextraction for the selective chemiluminescence determination of ofloxacin and fleroxacin in human urine. Microchem J. 2021;163:105913.

    Article  CAS  Google Scholar 

  12. Maghsoudi M, Nojavan S, Alexovič M, Tabani H. Two-phase agarose gel-electromembrane extraction: effect of organic solvent as an acceptor phase in electroendosmosis flow phenomenon. J Pharm Biomed Anal. 2021;195:113862.

    Article  CAS  Google Scholar 

  13. Rahimi A, Nojavan S, Maghsoudi M. Analysis of basic drugs in biological samples using dynamic single-interface hollow fiber liquid-phase microextraction combined with fast electromembrane extraction. Microchem J. 2020;157:105001.

    Article  CAS  Google Scholar 

  14. Mahdavi P, Nojavan S, Asadi S. Sugaring-out assisted electromembrane extraction of basic drugs from biological fluids: improving the efficiency and stability of extraction system. J Chromatogr A. 2019;1608:460411.

    Article  CAS  Google Scholar 

  15. Sobhi HR, Ghambarian M, Behbahani M, Esrafili A. Application of modified hollow fiber liquid phase microextraction in conjunction with chromatography-electron capture detection for quantification of acrylamide in waste water samples at ultra-trace levels. J Chromatogr A. 2017;1487:30–5.

    Article  CAS  Google Scholar 

  16. Ramos Payán M, López MÁ, Fernández-Torres R, Callejón Mochón M, Gómez Ariza JL. Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta. 2010;82:854–8.

    Article  Google Scholar 

  17. Drouin N, Rudaz S, Schappler J. New supported liquid membrane for electromembrane extraction of polar basic endogenous metabolites. J Pharm Biomed Anal. 2018;159:53–9.

    Article  CAS  Google Scholar 

  18. Ramos Payán M, López MÁ, Fernández Torres R, González JAO, Callejón Mochón M. Hollow fiber-based liquid phase microextraction (HF-LPME) as a new approach for the HPLC determination of fluoroquinolones in biological and environmental matrices. J Pharm Biomed Anal. 2011;55:332–41.

    Article  Google Scholar 

  19. Tabani H, Fakhari AR, Shahsavani A. Simultaneous determination of acidic and basic drugs using dual hollow fibre electromembrane extraction combined with CE. Electrophoresis. 2013;34:269–76.

    Article  CAS  Google Scholar 

  20. Li B, Petersen NJ, Ramos Payán M, Hansen SH, Pedersen-Bjergaard S. Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography. Talanta. 2014;120:224–9.

    Article  CAS  Google Scholar 

  21. Ramos Payán M, Maspoch S, Llobera A. A simple and fast double-flow microfluidic device based liquid-phase microextraction (DF-μLPME) for the determination of parabens in water samples. Talanta. 2017;165:496–501.

    Article  Google Scholar 

  22. Santigosa-Murillo E, Muñoz-Berbel X, Maspoch S, Muñoz M, Ramos Payán M. Impedance model for voltage optimization of parabens extraction in an electromembrane millifluidic device. J Chromatogr A. 1625;2020:461270.

    Google Scholar 

  23. Santigosa-Murillo E, Maspoch S, Ramos Payán M. Liquid phase microextraction integrated into a microchip device for the extraction of fluoroquinolones from urine samples. Microchem J. 2019;145:280–6.

    Article  Google Scholar 

  24. Ramos Payán M, Maspoch S, Llobera A. An effective microfluidic based liquid-phase microextraction device (μLPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal Chim Acta. 2016;946:56–63.

    Article  Google Scholar 

  25. Ramos Payán M, Santigosa-Murillo E, Coello J, López MÁ. A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions. J Chromatogr A. 2018;1556:29–36.

    Article  Google Scholar 

  26. Ramos Payán M, Jensen H, Petersen NJ, Hansen SH, Pedersen-Bjergaard S. Liquid-phase microextraction in a microfluidic-chip – high enrichment and sample clean-up from small sample volumes based on three-phase extraction. Anal Chim Acta. 2012;735:46–53.

    Article  Google Scholar 

  27. Kamankesh M, Mollahosseini A, Mohammadi A, Seidi S. Haas in grilled meat: determination using an advanced lab-on-a-chip flat electromembrane extraction coupled with on-line HPLC. Food Chem. 2020;311:125876.

    Article  CAS  Google Scholar 

  28. Asl YA, Yamini Y, Seidi S. A novel approach to the consecutive extraction of drugs with different properties via on chip electromembrane extraction. Analyst. 2016;141:311–8.

    Article  CAS  Google Scholar 

  29. Baharfar M, Yamini Y, Seidi S, Arain MB. Approach for downscaling of electromembrane extraction as a lab on-a-chip device followed by sensitive red-green-blue detection. Anal Chem. 2018;90:8478–86.

    Article  CAS  Google Scholar 

  30. Karami M, Yamini Y, Abdossalami Asl Y, Rezazadeh M. On-chip pulsed electromembrane extraction as a new concept for analysis of biological fluids in a small device. J Chromatogr A. 2017;1527:1–9.

    Article  CAS  Google Scholar 

  31. Asl YA, Yamini Y, Seidi S, Rezazadeh M. Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction. Anal Chim Acta. 2016;937:61–8.

    Article  CAS  Google Scholar 

  32. Ramos Payán M, Santigosa-Murillo E, Fernández Torres R, López MÁ. A new microchip design. A versatile combination of electromembrane extraction and liquid-phase microextraction in a single chip device. Anal Chem. 2018;90:10417–24.

    Article  Google Scholar 

  33. Zarghampour F, Yamini Y, Baharfar M, Faraji M. Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device. Analyst. 2019;144:1159–66.

    Article  CAS  Google Scholar 

  34. Román C, Martín Valero MJ, Fernández Torres R, López MÁ. Use of polymer inclusion membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs. Talanta. 2018;179:601–7.

    Article  Google Scholar 

  35. Hansen FA, Santigosa-Murillo E, Ramos Payán M, Muñoz M, Leere Øiestad E, Pedersen-Bjergaard S. Electromembrane extraction using deep eutectic solvents as the liquid membrane. Anal Chim Acta. 2021;1143:109–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agencia de Gestió d’Ajusts Universitaris i the Recerca (2017-SGR-329). Elia Santigosa thanks Universitat Autònoma de Barcelona (UAB) for the PIF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ramos-Payán.

Ethics declarations

Ethics declarations

The urine sample was provided voluntarily and with informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santigosa, E., Pedersen-Bjergaard, S., Muñoz, M. et al. Green microfluidic liquid-phase microextraction of polar and non-polar acids from urine. Anal Bioanal Chem 413, 3717–3723 (2021). https://doi.org/10.1007/s00216-021-03320-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03320-9

Keywords

Navigation