Skip to main content
Log in

A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dědina J, Tsalev DL. Hydride generation atomic absorption spectrometry. Chichester: Wiley; 1995.

    Google Scholar 

  2. D’Ulivo A, Dědina J, Mester Z, Sturgeon RE, Wang QQ, Welz B. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report). Pure Appl Chem. 2011;83:1283–340.

    Article  Google Scholar 

  3. Cornelis R, Caruso J, Crews H, Heumann K. Handbook of elemental speciation II, species in the environment, food, medicine and occupational health. Chichester, England: Wiley; 2005.

    Book  Google Scholar 

  4. Howard AG. (Boro)hydride techniques in trace element speciation - invited lecture. J Anal At Spectrom. 1997;12:267–72.

  5. Musil S. Speciation analysis of arsenic based on hydride generation. Chem Listy. 2020;114:374–81.

  6. Welna M, Szymczycha-Madeja A, Pohl P. Non-chromatographic speciation of As by HG technique–analysis of samples with different matrices. Molecules. 2020;25:4944.

    Article  CAS  PubMed Central  Google Scholar 

  7. Musil S, Pétursdóttir ÁH, Raab A, Gunnlaugsdóttir H, Krupp E, Feldmann J. Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal Chem. 2014;86:993–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pitzalis E, Onor M, Mascherpa MC, Pacchi G, Mester Z, D’Ulivo A. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Anal Chem. 2014;86:1599–607.

    Article  CAS  PubMed  Google Scholar 

  9. Marschner K, Pétursdóttir ÁH, Bücker P, Raab A, Feldmann J, Mester Z, et al. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal Chim Acta. 2019;1049:20–8.

    Article  CAS  PubMed  Google Scholar 

  10. Matoušek T, Hernández-Zavala A, Svoboda M, Langerová L, Adair BM, Drobná Z, et al. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochim Acta B. 2008;63:396–406.

    Article  Google Scholar 

  11. Matoušek T, Currier JM, Trojánková N, Saunders RJ, Ishida MC, González-Horta C, et al. Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. J Anal At Spectrom. 2013;28:1456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem. 2014;86:10422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomez-Ariza JL, Sánchez-Rodas D, Beltran R, Corns W, Stockwel P. Evaluation of atomic fluorescence spectrometry as a sensitive detection technique for arsenic speciation. Appl Organomet Chem. 1998;12:439–47.

    Article  CAS  Google Scholar 

  14. Marschner K, Musil S, Dědina J. Achieving 100% efficient postcolumn hydride generation for as speciation analysis by atomic fluorescence spectrometry. Anal Chem. 2016;88:4041–7.

    Article  CAS  PubMed  Google Scholar 

  15. Pétursdóttir ÁH, Gunnlaugsdóttir H, Jörundsdóttir H, Mestrot A, Krupp EM, Feldmann J. HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood. Anal Bioanal Chem. 2012;404:2185–91.

    Article  PubMed  Google Scholar 

  16. D’Ulivo A. Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim Acta B. 2004;59:793–825.

    Article  Google Scholar 

  17. D’Ulivo A, Onor M, Pitzalis E. Role of hydroboron intermediates in the mechanism of chemical vapor generation in strongly acidic media. Anal Chem. 2004;76:6342–52.

    Article  PubMed  Google Scholar 

  18. D’Ulivo A, Mester Z, Sturgeon RE. The mechanism of formation of volatile hydrides by tetrahydroborate(III) derivatization: a mass spectrometric study performed with deuterium labeled reagents. Spectrochim Acta B. 2005;60:423–38.

    Article  Google Scholar 

  19. D’Ulivo A, Mester Z, Meija J, Sturgeon RE. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal Chem. 2007;79:3008–15.

    Article  PubMed  Google Scholar 

  20. D’Ulivo A. Mechanism of generation of volatile species by aqueous boranes: towards the clarification of most controversial aspects. Spectrochim Acta B. 2010;65:360–75.

    Article  Google Scholar 

  21. D’Ulivo A. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model. Spectrochim Acta B. 2016;119:91–107.

    Article  Google Scholar 

  22. D’Ulivo A, Meija J, Mester Z, Pagliano E, Sturgeon RE. Condensation cascades and methylgroup transfer reactions during the formation of arsane, methyl- and dimethylarsane by aqueous borohydride and (methyl) arsenates. Anal Bioanal Chem. 2012;402:921–33.

  23. Pagliano E, Onor M, Meija J, Mester Z, Sturgeon RE, D’Ulivo A. Mechanism of hydrogen transfer in arsane generation by aqueous tetrahydridoborate: interference effects of AuIII and other noble metals. Spectrochim Acta B. 2011;66:740–7.

    Article  CAS  Google Scholar 

  24. Pagliano E, D’Ulivo A, Mester Z, Sturgeon RE, Meija J. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BHnD4-n] and the effect of trace amounts of Rh(III) ions. J Am Soc Mass Spectrom. 2012;23:2178–86.

    Article  CAS  PubMed  Google Scholar 

  25. Pagliano E, Onor M, McCooeye M, D’Ulivo A, Sturgeon RE, Mester Z. Application of direct analysis in real time to a multiphase chemical system: identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int J Mass Spectrom. 2014;371:42–6.

    Article  CAS  Google Scholar 

  26. Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH4 under non-analytical conditions. Anal Bioanal Chem 2020;412:7603–7613.

  27. D’Ulivo L, Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. Anal Bioanal Chem. 2019;411:1569–78.

    Article  PubMed  Google Scholar 

  28. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.

    Article  CAS  PubMed  Google Scholar 

  29. Gross JH. Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80.

    Article  CAS  PubMed  Google Scholar 

  30. Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2009;81:1101–7.

    Article  CAS  PubMed  Google Scholar 

  31. Borges DLG, Sturgeon RE, Welz B, Curtius AJ, Mester Z. Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Anal Chem. 2009;81:9834–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kratzer J, Zelina O, Svoboda M, Sturgeon RE, Mester Z, Dědina J. Atomization of bismuthane in a dielectric barrier discharge: a mechanistic study. Anal Chem. 2016;88:1804–11.

    Article  CAS  PubMed  Google Scholar 

  33. Kratzer J, Musil S, Marschner K, Svoboda M, Matoušek T, Mester Z, et al. Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Anal Chim Acta. 2018;1028:11–21.

    Article  CAS  PubMed  Google Scholar 

  34. Matoušek T, Wang ZF, Douillet C, Musil S, Stýblo M. Direct speciation analysis of arsenic in whole blood and blood plasma at low exposure levels by hydride generation-cryotrapping-inductively coupled plasma mass spectrometry. Anal Chem. 2017;89:9633–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Musil S, Matoušek T. On-line pre-reduction of pentavalent arsenicals by thioglycolic acid for speciation analysis by selective hydride generation-cryotrapping-atomic absorption spectrometry. Spectrochim Acta B. 2008;63:685–91.

    Article  Google Scholar 

  36. Taurková P, Svoboda M, Musil S, Matoušek T. Loss of di- and trimethylarsine on Nafion membrane dryers following hydride generation. J Anal At Spectrom. 2011;26:220–3.

    Article  Google Scholar 

  37. Moraes DP, Svoboda M, Matoušek T, Flores EMM, Dědina J. Selective generation of substituted arsines-cryotrapping-atomic absorption spectrometry for arsenic speciation analysis in N-methylglucamine antimonate. J Anal At Spectrom. 2012;27:1734–42.

  38. Huber CS, Vale MG, Dessuy MB, Svoboda M, Musil S, Dědina J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta. 2017;175:406–12.

    Article  CAS  PubMed  Google Scholar 

  39. Marschner K, Musil S, Dědina J. Demethylation of methylated arsenic species during generation of arsanes with tetrahydridoborate(1−) in acidic media. Anal Chem. 2016; 88(12):6366–73.

  40. Kratzer J, Mester Z, Sturgeon RE. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen. Spectrochim Acta B. 2011;66:594–603.

    Article  CAS  Google Scholar 

  41. Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, et al. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta. 2018;1005:16–26.

    Article  PubMed  Google Scholar 

  42. Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW. Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta. 2006;70:2480–91.

    Article  CAS  Google Scholar 

  43. Hirner AV, Feldmann J, Krupp E, Grümping R, Goguel R, Cullen WR. Metal(loid)organic compounds in geothermal gases and waters. Org Geochem. 1998;29:1765–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Garnet McRae for technical assistance during DART-HR-MS measurements and Prof. Jiří Dědina for valuable comments on the manuscript.

Funding

Financial support by the CAS (M200311202), which permitted the scientific visit of S.M., J.K., and T.M. to NRC in Ottawa, and Institute of Analytical Chemistry of the CAS (institutional research plan RVO:68081715) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Musil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoušek, T., Kratzer, J., Sturgeon, R.E. et al. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Anal Bioanal Chem 413, 3443–3453 (2021). https://doi.org/10.1007/s00216-021-03289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03289-5

Keywords

Navigation