Abstract
Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.
Graphical abstract

This is a preview of subscription content, access via your institution.



References
Dědina J, Tsalev DL. Hydride generation atomic absorption spectrometry. Chichester: Wiley; 1995.
D’Ulivo A, Dědina J, Mester Z, Sturgeon RE, Wang QQ, Welz B. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report). Pure Appl Chem. 2011;83:1283–340.
Cornelis R, Caruso J, Crews H, Heumann K. Handbook of elemental speciation II, species in the environment, food, medicine and occupational health. Chichester, England: Wiley; 2005.
Howard AG. (Boro)hydride techniques in trace element speciation - invited lecture. J Anal At Spectrom. 1997;12:267–72.
Musil S. Speciation analysis of arsenic based on hydride generation. Chem Listy. 2020;114:374–81.
Welna M, Szymczycha-Madeja A, Pohl P. Non-chromatographic speciation of As by HG technique–analysis of samples with different matrices. Molecules. 2020;25:4944.
Musil S, Pétursdóttir ÁH, Raab A, Gunnlaugsdóttir H, Krupp E, Feldmann J. Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal Chem. 2014;86:993–9.
Pitzalis E, Onor M, Mascherpa MC, Pacchi G, Mester Z, D’Ulivo A. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Anal Chem. 2014;86:1599–607.
Marschner K, Pétursdóttir ÁH, Bücker P, Raab A, Feldmann J, Mester Z, et al. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal Chim Acta. 2019;1049:20–8.
Matoušek T, Hernández-Zavala A, Svoboda M, Langerová L, Adair BM, Drobná Z, et al. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochim Acta B. 2008;63:396–406.
Matoušek T, Currier JM, Trojánková N, Saunders RJ, Ishida MC, González-Horta C, et al. Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. J Anal At Spectrom. 2013;28:1456–65.
Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem. 2014;86:10422–8.
Gomez-Ariza JL, Sánchez-Rodas D, Beltran R, Corns W, Stockwel P. Evaluation of atomic fluorescence spectrometry as a sensitive detection technique for arsenic speciation. Appl Organomet Chem. 1998;12:439–47.
Marschner K, Musil S, Dědina J. Achieving 100% efficient postcolumn hydride generation for as speciation analysis by atomic fluorescence spectrometry. Anal Chem. 2016;88:4041–7.
Pétursdóttir ÁH, Gunnlaugsdóttir H, Jörundsdóttir H, Mestrot A, Krupp EM, Feldmann J. HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood. Anal Bioanal Chem. 2012;404:2185–91.
D’Ulivo A. Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim Acta B. 2004;59:793–825.
D’Ulivo A, Onor M, Pitzalis E. Role of hydroboron intermediates in the mechanism of chemical vapor generation in strongly acidic media. Anal Chem. 2004;76:6342–52.
D’Ulivo A, Mester Z, Sturgeon RE. The mechanism of formation of volatile hydrides by tetrahydroborate(III) derivatization: a mass spectrometric study performed with deuterium labeled reagents. Spectrochim Acta B. 2005;60:423–38.
D’Ulivo A, Mester Z, Meija J, Sturgeon RE. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal Chem. 2007;79:3008–15.
D’Ulivo A. Mechanism of generation of volatile species by aqueous boranes: towards the clarification of most controversial aspects. Spectrochim Acta B. 2010;65:360–75.
D’Ulivo A. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model. Spectrochim Acta B. 2016;119:91–107.
D’Ulivo A, Meija J, Mester Z, Pagliano E, Sturgeon RE. Condensation cascades and methylgroup transfer reactions during the formation of arsane, methyl- and dimethylarsane by aqueous borohydride and (methyl) arsenates. Anal Bioanal Chem. 2012;402:921–33.
Pagliano E, Onor M, Meija J, Mester Z, Sturgeon RE, D’Ulivo A. Mechanism of hydrogen transfer in arsane generation by aqueous tetrahydridoborate: interference effects of AuIII and other noble metals. Spectrochim Acta B. 2011;66:740–7.
Pagliano E, D’Ulivo A, Mester Z, Sturgeon RE, Meija J. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BHnD4-n]− and the effect of trace amounts of Rh(III) ions. J Am Soc Mass Spectrom. 2012;23:2178–86.
Pagliano E, Onor M, McCooeye M, D’Ulivo A, Sturgeon RE, Mester Z. Application of direct analysis in real time to a multiphase chemical system: identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int J Mass Spectrom. 2014;371:42–6.
Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH4 under non-analytical conditions. Anal Bioanal Chem 2020;412:7603–7613.
D’Ulivo L, Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. Anal Bioanal Chem. 2019;411:1569–78.
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.
Gross JH. Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80.
Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2009;81:1101–7.
Borges DLG, Sturgeon RE, Welz B, Curtius AJ, Mester Z. Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Anal Chem. 2009;81:9834–9.
Kratzer J, Zelina O, Svoboda M, Sturgeon RE, Mester Z, Dědina J. Atomization of bismuthane in a dielectric barrier discharge: a mechanistic study. Anal Chem. 2016;88:1804–11.
Kratzer J, Musil S, Marschner K, Svoboda M, Matoušek T, Mester Z, et al. Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Anal Chim Acta. 2018;1028:11–21.
Matoušek T, Wang ZF, Douillet C, Musil S, Stýblo M. Direct speciation analysis of arsenic in whole blood and blood plasma at low exposure levels by hydride generation-cryotrapping-inductively coupled plasma mass spectrometry. Anal Chem. 2017;89:9633–7.
Musil S, Matoušek T. On-line pre-reduction of pentavalent arsenicals by thioglycolic acid for speciation analysis by selective hydride generation-cryotrapping-atomic absorption spectrometry. Spectrochim Acta B. 2008;63:685–91.
Taurková P, Svoboda M, Musil S, Matoušek T. Loss of di- and trimethylarsine on Nafion membrane dryers following hydride generation. J Anal At Spectrom. 2011;26:220–3.
Moraes DP, Svoboda M, Matoušek T, Flores EMM, Dědina J. Selective generation of substituted arsines-cryotrapping-atomic absorption spectrometry for arsenic speciation analysis in N-methylglucamine antimonate. J Anal At Spectrom. 2012;27:1734–42.
Huber CS, Vale MG, Dessuy MB, Svoboda M, Musil S, Dědina J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta. 2017;175:406–12.
Marschner K, Musil S, Dědina J. Demethylation of methylated arsenic species during generation of arsanes with tetrahydridoborate(1−) in acidic media. Anal Chem. 2016; 88(12):6366–73.
Kratzer J, Mester Z, Sturgeon RE. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen. Spectrochim Acta B. 2011;66:594–603.
Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, et al. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta. 2018;1005:16–26.
Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW. Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta. 2006;70:2480–91.
Hirner AV, Feldmann J, Krupp E, Grümping R, Goguel R, Cullen WR. Metal(loid)organic compounds in geothermal gases and waters. Org Geochem. 1998;29:1765–78.
Acknowledgements
We are grateful to Garnet McRae for technical assistance during DART-HR-MS measurements and Prof. Jiří Dědina for valuable comments on the manuscript.
Funding
Financial support by the CAS (M200311202), which permitted the scientific visit of S.M., J.K., and T.M. to NRC in Ottawa, and Institute of Analytical Chemistry of the CAS (institutional research plan RVO:68081715) is highly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
(DOCX 292 kb)
Rights and permissions
About this article
Cite this article
Matoušek, T., Kratzer, J., Sturgeon, R.E. et al. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Anal Bioanal Chem 413, 3443–3453 (2021). https://doi.org/10.1007/s00216-021-03289-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-021-03289-5
Keywords
- Arsenic
- Hydride generation
- Cryotrapping
- Direct analysis in real time
- Ambient ionization
- Mass spectrometry