Skip to main content

Advertisement

Log in

Discrimination of French wine brandy origin by PTR-MS headspace analysis using ethanol ionization and sensory assessment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The headspace volatile organic compound (VOC) fingerprints (volatilome) of French wine brandies were investigated by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Protonated ethanol chemical ionization was used with dedicated experimental conditions that were previously validated for model wines. These included a reference vial containing a hydro-alcoholic solution with the same ethanol content (20% v/v) as the diluted sample spirits, which was used to establish steady-state ionization conditions. A low electric field strength to number density ratio E/N (85 Td) was used in the drift tube in order to limit the fragmentation of the protonated analytes. The obtained headspace fingerprints were used to investigate the origin of French brandies produced within a limited geographic production area. Brandies of two different vintages (one freshly distilled and one aged for 14 years in French oak barrels) were successfully classified according to their growth areas using unsupervised (principal component analysis, PCA) and supervised (partial least squares regression discriminant analysis, PLS-DA) multivariate analyses. The models obtained by PLS-DA allowed the identification of discriminant volatile compounds that were mainly characterised as key aroma compounds of wine brandies. The discrimination was supported by sensory evaluation conducted with free sorting tasks. The results showed that this ethanol ionization method was suitable for direct headspace analysis of brandies. They also demonstrated its ability to distinguish French brandies according to their growth areas, and this effect on brandy VOC composition was confirmed at a perceptive level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Material and data (except those found in ESM) are not available from the authors (confidential contract; PhD thesis of N.M.).

References

  1. Deuscher Z, Andriot I, Sémon E, Repoux M, Preys S, Roger J-M, et al. Volatile compounds profiling by using proton transfer reaction – time of flight – mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. J Mass Spectrom. 2019;54(1):92–119.

    Article  CAS  PubMed  Google Scholar 

  2. Mildner-Szkudlarz S, Jelen HH, Zawirska-Wojtasiak R, Wasowicz E. Application of headspace - solid phase microextraction and multivariate analysis for plant oils differentiation. Food Chem. 2003;83(4):515–22.

    Article  CAS  Google Scholar 

  3. Farneti B, Khomenko I, Grisenti M, Ajelli M, Betta E, Algarra AA, et al. Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Front Plant Sci. 2017;8:617.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bressanello D, Liberto E, Cordero CEI, Sgorbini B, Rubiolo P, Pellegrino G, et al. Chemometric modeling of coffee sensory notes through their chemical signatures: potential and limits in defining an analytical tool for quality control. J Agric Food Chem. 2018;66(27):7096–109.

    Article  CAS  PubMed  Google Scholar 

  5. Magagna F, Guglielmetti A, Liberto E, Reichenbach SE, Allegrucci E, Gobino G, et al. Comprehensive chemical fingerprinting of high-quality cocoa at early stages of processing: effectiveness of combined untargeted and targeted approaches for classification and discrimination. J Agric Food Chem. 2017;65(30):6329–41.

    Article  CAS  PubMed  Google Scholar 

  6. Stilo F, Tredici G, Bicchi C, Robbat A, Morimoto J, Cordero C. Climate and processing effects on tea (Camellia sinensis L. Kuntze) metabolome: accurate profiling and fingerprinting by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Molecules. 2020;25(10):2447.

    Article  CAS  PubMed Central  Google Scholar 

  7. Ge G-B, Zhang Y-Y, Hao D-C, Hu Y, Luan H-W, Liu X-B, et al. Chemotaxonomic study of medicinal Taxus species with fingerprint and multivariate analysis. Planta Med. 2008;74(07):773–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kuś PM, van Ruth S. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT-Food Sci Technol. 2015;62(1):69–75.

    Article  Google Scholar 

  9. Biasioli F, Yeretzian C, Märk TD, Dewulf J, Van Langenhove H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. TrAC Trends Anal Chem. 2011;30(7):1003–17.

    Article  CAS  Google Scholar 

  10. Déléris I, Saint-Eve A, Sémon E, Guillemin H, Guichard E, Souchon I, et al. Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods. J Mass Spectrom. 2013;48(5):594–607.

    Article  PubMed  Google Scholar 

  11. Le Quéré JL, Gierczynski I, Sémon E. An atmospheric pressure chemical ionization - ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: a tool for linking aroma release to aroma perception. J Mass Spectrom. 2014;49(9):918–28.

    Article  PubMed  Google Scholar 

  12. Beauchamp J, Zardin E. Odorant detection by on-line chemical ionization mass spectrometry. In: Buettner A, editor. Handbook of odor. Cham: Springer International Publishing; 2017. p. 355–408.

    Google Scholar 

  13. Spitaler R, Araghipour N, Mikoviny T, Wisthaler A, Via JD, Märk TD. PTR-MS in enology: advances in analytics and data analysis. Int J Mass Spectrom. 2007;266(1–3):1–7.

    Article  CAS  Google Scholar 

  14. Déléris I, Saint-Eve A, Guo Y, Lieben P, Cypriani M-L, Jacquet N, et al. Impact of swallowing on the dynamics of aroma release and perception during the consumption of alcoholic beverages. Chem Senses. 2011;36(8):701–13.

    Article  PubMed  Google Scholar 

  15. Fiches G, Déléris I, Saint-Eve A, Brunerie P, Souchon I. Modifying PTR-MS operating conditions for quantitative headspace analysis of hydro-alcoholic beverages. 2. Brandy characterization and discrimination by PTR-MS. Int J Mass Spectrom. 2014;360(0):15–23.

    Article  CAS  Google Scholar 

  16. Muñoz-González C, Sémon E, Martín-Álvarez PJ, Guichard E, Moreno-Arribas MV, Feron G, et al. Wine matrix composition affects temporal aroma release as measured by proton transfer reaction – time-of-flight – mass spectrometry. Aust J Grape Wine Res. 2015;21(3):367–75.

    Article  Google Scholar 

  17. Aznar M, Tsachaki M, Linforth RST, Ferreira V, Taylor AJ. Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS. Int J Mass Spectrom. 2004;239(1):17–25.

    Article  CAS  Google Scholar 

  18. Tsachaki M, Linforth RST, Taylor AJ. Dynamic headspace analysis of the release of volatile organic compounds from ethanolic systems by direct APCI-MS. J Agric Food Chem. 2005;53(21):8328–33.

    Article  CAS  PubMed  Google Scholar 

  19. Tsachaki M, Gady A-L, Kalopesas M, Linforth RST, Athès V, Marin M, et al. Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions. J Agric Food Chem. 2008;56(13):5308–15.

    Article  CAS  PubMed  Google Scholar 

  20. Tsachaki M, Linforth RST, Taylor AJ. Aroma release from wines under dynamic conditions. J Agric Food Chem. 2009;57(15):6976–81.

    Article  CAS  PubMed  Google Scholar 

  21. Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process. 1998;173:191–241.

    Article  CAS  Google Scholar 

  22. Blake RS, Monks PS, Ellis AM. Proton-transfer reaction mass spectrometry. Chem Rev. 2009;109(3):861–96.

    Article  CAS  PubMed  Google Scholar 

  23. Biasioli F, Gasperi F, Yeretzian C, Märk TD. PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal Chem. 2011;30(7):968–77.

    Article  CAS  Google Scholar 

  24. Ellis AM, Mayhew CA. Proton transfer reaction mass spectrometry. Principles and applications. Chichester: Wiley; 2014. p. 350.

    Book  Google Scholar 

  25. Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, et al. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom. 2009;286(2–3):122–8.

    Article  CAS  Google Scholar 

  26. Beauchamp J, Herbig J. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) for aroma compound detection in real-time: technology, developments, and applications. In: Guthrie B, Beauchamp J, Buettner A, Lavine BK, editors. The chemical sensory informatics of food: measurement, analysis, integration. ACS Symposium Series. 1191. Washington DC: American Chemical Society; 2015. pp. 235–51.

  27. Bergamaschi M, Biasioli F, Cappellin L, Cecchinato A, Cipolat-Gotet C, Cornu A, et al. Proton transfer reaction time-of-flight mass spectrometry: a high-throughput and innovative method to study the influence of dairy system and cow characteristics on the volatile compound fingerprint of cheeses. J Dairy Sci. 2015;98(12):8414–27.

    Article  CAS  PubMed  Google Scholar 

  28. Boscaini E, Mikoviny T, Wisthaler A, Hartungen Ev, Märk TD. Characterization of wine with PTR-MS. Int J Mass Spectrom 2004;239(2–3):215–219.

  29. Campbell-Sills H, Capozzi V, Romano A, Cappellin L, Spano G, Breniaux M, et al. Advances in wine analysis by PTR-ToF-MS: optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters. Int J Mass Spectrom. 2016;397–398:42–51.

    Article  Google Scholar 

  30. Arvisenet G, Ballester J, Ayed C, Sémon E, Andriot I, Le Quere J-L, et al. Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Qual Prefer. 2019;71:172–80.

    Article  Google Scholar 

  31. Aprea E, Biasioli F, Märk TD, Gasperi F. PTR-MS study of esters in water and water/ethanol solutions: fragmentation patterns and partition coefficients. Int J Mass Spectrom. 2007;262(1–2):114–21.

    Article  CAS  Google Scholar 

  32. Malfondet N, Brunerie P, Le Quéré JL. Characterization of aged brandies by proton transfer reaction-mass spectrometry according to their origin within a limited production area. 16th International Symposium on Olfaction and Electronic Nose; 2015 June 28–July 1, 2015; Dijon, France.

  33. Malfondet N, Brunerie P, Le Quéré JL. Analysis of brandy headspace by proton-transfer-reaction mass spectrometry at high ethanol content in vino Analytica Scientia 2015, 9th In Vino Analytica Scientia Symposium, IVAS 2015; 14-17 July, 2015; Trento, Italy2015.

  34. Malfondet N. La typicité d'une eau de vie de cognac, itinéraire technologique et lien au terroir [PhD]. Dijon: Université de Bourgogne; 2015.

  35. Dryahina K, Pehal F, Smith D, Španěl P. Quantification of methylamine in the headspace of ethanol of agricultural origin by selected ion flow tube mass spectrometry. Int J Mass Spectrom. 2009;286(1):1–6.

    Article  CAS  Google Scholar 

  36. Sémon E, Arvisenet G, Guichard E, Le Quéré J-L. Modified proton transfer reaction mass spectrometry (PTR-MS) operating conditions for in vitro and in vivo analysis of wine aroma. J Mass Spectrom. 2018;53(1):65–77.

    Article  PubMed  Google Scholar 

  37. Makhoul S, Romano A, Cappellin L, Spano G, Capozzi V, Benozzi E, et al. Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters. J Mass Spectrom. 2014;49(9):850–9.

    Article  CAS  PubMed  Google Scholar 

  38. Makhoul S, Romano A, Capozzi V, Spano G, Aprea E, Cappellin L, et al. Volatile compound production during the bread-making process: effect of flour, yeast and their interaction. Food Bioprocess Technol. 2015;8(9):1925–37.

    Article  CAS  Google Scholar 

  39. Capozzi V, Makhoul S, Aprea E, Romano A, Cappellin L, Sanchez Jimena A, et al. PTR-MS characterization of VOCs associated with commercial aromatic bakery yeasts of wine and beer origin. Molecules. 2016;21(4):483.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, et al. PTR-ToF-MS for the online monitoring of alcoholic fermentation in wine: assessment of VOCs variability associated with different combinations of saccharomyces/non-saccharomyces as a case-study. Fermentation. 2020;6(2):55.

    Article  CAS  Google Scholar 

  41. Fiches G, Déléris I, Saint-Eve A, Pollet B, Brunerie P, Souchon I. Modifying PTR-MS operating conditions for quantitative headspace analysis of hydro-alcoholic beverages. 1. Variation of the mean collision energy to control ionization processes occurring during PTR-MS analyses of 10–40% (v/v) ethanol–water solutions. Int J Mass Spectrom. 2013;356(0):41–5.

    Article  CAS  Google Scholar 

  42. Malfondet N, Gourrat K, Brunerie P, Le Quéré J-L. Aroma characterization of freshly-distilled French brandies; their specificity and variability within a limited geographic area. Flavour Fragr J. 2016;31(5):361–76.

    Article  CAS  Google Scholar 

  43. Roullier-Gall C, Lucio M, Noret L, Schmitt-Kopplin P, Gougeon RD. How subtle is the “terroir” effect? Chemistry-related signatures of two “Climats de Bourgogne”. PLoS One. 2014;9(5):e97615.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Perrin L, Pagès J. A methodology for the analysis of sensory typicality judgments. J Sens Stud. 2009;24(5):749–73.

    Article  Google Scholar 

  45. Ballester J. Mise en évidence d'un espace sensoriel et caractérisation des marqueurs relatifs à l'arôme des vins issus du cépage Chardonnay [PhD]. Dijon: Université de Bourgogne, Universidad politécnica de Valencia; 2004.

  46. Cadot Y, Caillé S, Thiollet-Scholtus M, Samson A, Barbeau G, Cheynier V. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Qual Prefer. 2012;24(1):48–58.

    Article  Google Scholar 

  47. Rodrigues H, Sáenz-Navajas M-P, Franco-Luesma E, Valentin D, Fernández-Zurbano P, Ferreira V, et al. Sensory and chemical drivers of wine minerality aroma: an application to Chablis wines. Food Chem. 2017;230:553–62.

    Article  CAS  PubMed  Google Scholar 

  48. Chevennement R, Gibey R, Grispoux P, Levaux J, Sintot D. Typical study of the Vin Jaune wine. Statistical approach of analytical results. Rev Fr Oenol. 2001;187:26–9.

    Google Scholar 

  49. Zhao YP, Li JM, Xu Y, Fan WL, Jiang WG. Characterization of aroma compounds of four brandies by aroma extract dilution analysis. Am J Enol Vitic. 2009;60(3):269–76.

    Article  CAS  Google Scholar 

  50. Uselmann V, Schieberle P. Decoding the combinatorial aroma code of a commercial Cognac by application of the sensomics concept and first insights into differences from a German brandy. J Agric Food Chem. 2015;63(7):1948–56.

    Article  CAS  PubMed  Google Scholar 

  51. Ledauphin J, Le Milbeau C, Barillier D, Hennequin D. Differences in the volatile compositions of French labeled brandies (Armagnac, Calvados, Cognac, and Mirabelle) using GC-MS and PLS-DA. J Agric Food Chem. 2010;58(13):7782–93.

    Article  CAS  PubMed  Google Scholar 

  52. Chollet S, Valentin D, Abdi H. Free sorting task. In: Varela P, Ares G, editors. Novel techniques in sensory characterization and consumer profiling. Boca Raton: CRC Press; 2014. p. 207–27.

    Google Scholar 

  53. Faye P, Brémaud D, Durand Daubin M, Courcoux P, Giboreau A, Nicod H. Perceptive free sorting and verbalization tasks with naive subjects: an alternative to descriptive mappings. Food Qual Prefer. 2004;15(7):781–91.

    Article  Google Scholar 

  54. Piombino P, Nicklaus S, Le Fur Y, Moio L, Le Quéré JL. Selection of products presenting given flavor characteristics. An apllication to wine. Am J Enol Vitic. 2004;55(1):27–34.

    Article  Google Scholar 

  55. Bourrouilh R, Darne G. Geology and terroirs of Cognac’s vineyard. Boll Soc Geol Ital. 2006;6 (Vol. Special):75–86.

  56. Panosyan AG, Mamikonyan GV, Torosyan M, Gabrielyan ES, Mkhitaryan SA, Tirakyan MR, et al. Determination of the composition of volatiles in Cognac (brandy) by headspace gas chromatography–mass spectrometry. J Anal Chem. 2001;56(10):945–52.

    Article  CAS  Google Scholar 

  57. Dimitrov D, Ivanova S. Aromatic profile of Bulgarian grape and fruit (plum) brandies. Ann Food Sci Technol. 2016;17(2):387–93.

    CAS  Google Scholar 

  58. Dimitrov D, Ivanova S. Identification and quantification of certain volatile aromatic components in grape brandies. Ann Food Sci Technol. 2017;18(4):586–92.

    CAS  Google Scholar 

  59. Matijasevic S, Popovic-Djordjevic J, Ristic R, Cirkovic D, Cirkovic B, Popovic T. Volatile aroma compounds of brandy 'Lozovaca' produced from muscat table grapevine cultivars (Vitis vinifera L.). Molecules. 2019;24(13):2485.

    Article  PubMed Central  Google Scholar 

  60. Gueven A. Chemical fingerprints of Raki: a traditional distilled alcoholic beverage. J Inst Brew. 2013;119:126–32.

    CAS  Google Scholar 

  61. Thibaud F, Shinkaruk S, Darriet P. Quantitation, organoleptic contribution, and potential origin of diethyl acetals formed from various aldehydes in Cognac. J Agric Food Chem. 2019;67(9):2617–25.

    Article  CAS  PubMed  Google Scholar 

  62. Cadoret M, Lê S, Pagès J. A factorial approach for sorting task data (FAST). Food Qual Prefer. 2009;20(6):410–7.

    Article  Google Scholar 

  63. Cadoret M, Lê S, Pagès J. Multidimensional scaling versus multiple correspondence analysis when analyzing categorization data. In: Fichet B, Piccolo D, Verde R, Vichi M, editors. Classification and multivariate analysis for complex data structures. classification and multivariate analysis for complex data structures. Berlin, Heidelberg: Springer; 2011. pp. 301–8.

  64. Villamor RR, Ross CF. Wine matrix compounds affect perception of wine aromas. Annu Rev Food Sci Technol. 2013;4(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  65. Chong I-G, Jun C-H. Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst. 2005;78(1–2):103–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Etienne Sémon (CSGA, ChemoSens Platform) for skillful assistance with the PTR-MS instrument. The authors thank the members of the internal sensory panel at Centre de Recherche Pernod Ricard. INRAE, Regional Council of Bourgogne Franche-Comté and the European Regional Development Fund (ERDF) are thanked for equipment funding.

Code availability

Not applicable

Funding

The research was funded by INRAE and Pernod Ricard (Confidential Research Collaboration contract). ANRT (National Agency for Research and Technology)-Pernod Ricard PhD grant to N.M. (CIFRE convention 2012/1072).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.-L. Le Quéré and N. Malfondet. Methodology and validation: J.-L. Le Quéré. Investigation and analyses: N. Malfondet. Data curation: N. Malfondet and J.-L. Le Quéré. Formal analysis: N. Malfondet and J.-L. Le Quéré. Writing—original draft preparation: N. Malfondet and J.-L. Le Quéré. Writing—review and editing: N. Malfondet, J.-L. Le Quéré and P. Brunerie. Supervision: J.-L. Le Quéré. Project administration: J.-L. Le Quéré and P. Brunerie. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jean-Luc Le Quéré.

Ethics declarations

Conflict of interest

Pernod Ricard partially funded the research, and P. Brunerie was a previous member of Pernod Ricard staff (now retired). However, the authors declare no conflict of interest and no competing financial interests. Moreover, the funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malfondet, N., Brunerie, P. & Le Quéré, JL. Discrimination of French wine brandy origin by PTR-MS headspace analysis using ethanol ionization and sensory assessment. Anal Bioanal Chem 413, 3349–3368 (2021). https://doi.org/10.1007/s00216-021-03275-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03275-x

Keywords