Skip to main content
Log in

Assessment of pesticides in water using time-weighted average calibration of passive sampling device manufactured with carbon nanomaterial coating on stainless steel wire

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The continued contamination of water sources by pesticides is a problem that involves the life of aquatic organisms and human health, especially in countries whose economy is based on agriculture. The need to know the quality of drinking water under these circumstances is a priority for the public health of any community. Passive sampling methods allow the determination of long-term environmental pollutants through a single sample collection, reducing time and cost of analyses. One advantage of passive sampling is that it is possible to calculate a time-weighted average (TWA) concentration value or an equilibrium concentration value, depending on the type of device used and the exposure time. Passive sampling techniques using carbon nanomaterials (CNMs) have a high potential for pesticide sampling in aquatic systems. A device for passive sampling manufactured with CNMs in a microextraction system and recyclable materials was calibrated in laboratory exposure conditions over 15 days. The calibration results showed linear accumulation periods between 5 and 10 days. Sampling rates were between 0.014 and 0.146 mL day−1. The sampler was field-tested in the San Francisco river basin in the state of Minas Gerais in Brazil for 7 days. This research allowed for the detection and calculation of TWA concentrations for organochlorine pesticides such as α-HCH, 4,4-DDE, and 4,4-DD in water sources. The manufactured device demonstrated greater sensitivity than the grab sampling processes for the detection of pesticides. The performed passive sampling system using gas chromatography/mass spectrometry (GC/MS) technique allowed for the collection, detection, identification, and quantification of 26 pesticides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAPES :

Coordenação de aperfeiçoamento de pessoal de nível superior

CEMIG :

Companhia Energética de Minas Gerais

CNMs:

Carbon nanomaterials

CNPq :

Conselho Nacional de Desenvolvimento Científico e Tecnológico

CVD:

Chemical vapor deposition

DGT:

Diffusive gradients in thin films technique

FEG:

Field emission gun

GC/MS:

Gas chromatography/mass spectrometry

IBAMA :

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

OCPs:

Organochlorine pesticides

PCa:

Prostate cancer

PD:

Parkinson’s disease

PET:

Polyterephthalate

POCIS:

Polar organic chemical integrative sampler

POPs:

Persistent organic pollutants

PVC:

Polyvinyl chloride

SEM:

Scanning electron microscopy

SPMDs:

Semi-permeable membrane device

SPME:

Solid-phase microextraction

TWA:

Time-weighted average

WBL:

Water boundary layer

References

  1. IBAMA. Relatórios de comercialização de agrotóxicos. 2020 [ONLINE] Available at: https://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#sobreosrelatorios. [Accessed 12 Dec 2020]

  2. Maggi B. PROJETO DE LEI N° 6.299, DE 2002. 2018 [ONLINE] Available at: https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra?codteor=1654426&filename=Tramitacao-PL+6299/2002. [Accessed 12 Nov 2020]

  3. Mongabay. Bolsonaro administration approves 290 new pesticide products for use. 2019 [ONLINE] Available at: https://news.mongabay.com/2019/08/bolsonaro-administration-approves-290-new-pesticide-products-for-use/. [Accessed 12 Dec 2020]

  4. Martin FL, Martinez EZ, Stopper H, Garcia SB, Uyemura SA, Kannen V. Increased exposure to pesticides and colon cancer: early evidence in Brazil. Chemosphere. 2018;209:623–31. https://doi.org/10.1016/j.chemosphere.2018.06.118.

    Article  CAS  PubMed  Google Scholar 

  5. Pardo LA, Freeman LBE, Lerro CC, Andreotti G, Hofmann JN, Parks CG, et al. Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ Health 2020;19(1). doi: https://doi.org/10.1186/s12940-020-00583-0.

  6. Medeiros MS, Reddy SP, Socal MP, Schumacher-Schuh AF, Rieder CRM. Occupational pesticide exposure and the risk of death in patients with Parkinson’s disease: an observational study in southern Brazil. Environ Health 2020;19(1). doi: https://doi.org/10.1186/s12940-020-00624-8.

  7. Yiin JH, Ruder AM, Stewart PA, Waters MA, Carreon T, Butler MA, et al. The upper midwest health study: a case-control study of pesticide applicators and risk of glioma. Environ Health 2012;11. doi: https://doi.org/10.1186/1476-069x-11-39.

  8. Bernieri T, Rodrigues D, Barbosa IR, Ardenghi PG, da Silva LB. Occupational exposure to pesticides and thyroid function in Brazilian soybean farmers. Chemosphere. 2019;218:425–9. https://doi.org/10.1016/j.chemosphere.2018.11.124.

    Article  CAS  PubMed  Google Scholar 

  9. Santos R, Piccoli C, Cremonese C, Freire C. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in southern Brazil. Environ Res. 2019;173:221–31. https://doi.org/10.1016/j.envres.2019.03.050.

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira RC, Queiroz SCD, da Luz CFP, Porto RS, Rath S. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere. 2016;163:525–34. https://doi.org/10.1016/j.chemosphere.2016.08.022.

    Article  CAS  PubMed  Google Scholar 

  11. Gerez N, Perez-Parada A, Cesio MV, Heinzen H. Occurrence of pesticide residues in candies containing bee products. Food Control. 2017;72:293–9. https://doi.org/10.1016/j.foodcont.2015.10.006.

    Article  CAS  Google Scholar 

  12. Perez N, Jesus F, Perez C, Niell S, Draper A, Obrusnik N, et al. Continuous monitoring of beehives’ sound for environmental pollution control. Ecol Eng. 2016;90:326–30. https://doi.org/10.1016/j.ecoleng.2016.01.082.

    Article  Google Scholar 

  13. Valenzuela EE, Menezes HC, Cardeal ZL. New passive sampling device for effective monitoring of pesticides in water. Anal Chim Acta. 2019;1054:26–37. https://doi.org/10.1016/j.aca.2018.12.017.

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa FHF, Menezes HC, Teixeira APD, Serp P, Antipoff V, Cardeal ZD. Versatile magnetic carbon nanotubes for sampling and pre concentration of pesticides in environmental water. Talanta. 2017;167:538–43. https://doi.org/10.1016/j.talanta.2017.02.054.

    Article  CAS  PubMed  Google Scholar 

  15. Menezes HC, Paulo BP, Paiva MJN, Cardeal ZL. A simple and quick method for the determination of pesticides in environmental water by HF-LPME-GC/MS. J Anal Methods Chem. 2016. https://doi.org/10.1155/2016/7058709.

  16. Valenzuela EF, de Paula FGF, Teixeira APC, Menezes HC, Cardeal ZL. A new carbon nanomaterial solid-phase microextraction to pre-concentrate and extract pesticides in environmental water. Talanta. 2020;217:121011. https://doi.org/10.1016/j.talanta.2020.121011.

    Article  CAS  PubMed  Google Scholar 

  17. Huckins J, Tubergen M, Manuweera G. Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere. 1990;20(5):20.

    Article  Google Scholar 

  18. Kot A, Zabiegala B, Namiesnik J. Passive sampling for long-term monitoring of organic pollutants in water. Trends Anal Chem. 2000;19(7):446–59. https://doi.org/10.1016/s0165-9936(99)00223-x.

    Article  CAS  Google Scholar 

  19. Valenzuela EF, Menezes HC, Cardeal ZL. Passive and grab sampling methods to assess pesticide residues in water. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00998-8.

  20. Seethapathy S, Gorecki T, Li XJ. Passive sampling in environmental analysis. J Chromatogr A. 2008;1184(1–2):234–53. https://doi.org/10.1016/j.chroma.2007.07.070.

    Article  CAS  PubMed  Google Scholar 

  21. Zabiegala B, Kot-Wasik A, Urbanowicz M, Namiesnik J. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem. 2010;396(1):273–96. https://doi.org/10.1007/s00216-009-3244-4.

    Article  CAS  PubMed  Google Scholar 

  22. Lu JX, Liu JF, Wei Y, Jiang KL, Fan SS, Liu JY, et al. Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J Sep Sci. 2007;30(13):2138–43. https://doi.org/10.1002/jssc.200700083.

    Article  CAS  PubMed  Google Scholar 

  23. Dehghani MH, Kamalian S, Shayeghi M, Yousefi M, Heidarinejad Z, Agarwal S, et al. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem J. 2019;145:486–91. https://doi.org/10.1016/j.microc.2018.10.053.

    Article  CAS  Google Scholar 

  24. See HH, Sanagi MM, Ibrahim WAW, Naim AA. Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. J Chromatogr A. 2010;1217(11):1767–72. https://doi.org/10.1016/j.chroma.2010.01.053.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao PF, Wang ZK, Li KJ, Guo XJ, Zhao LS. Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. 2018;1568:8–21. https://doi.org/10.1016/j.chroma.2018.07.022.

    Article  CAS  PubMed  Google Scholar 

  26. Hua S, Gong JL, Zeng GM, Yao FB, Guo M, Ou XM. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere. 2017;177:65–76. https://doi.org/10.1016/j.chemosphere.2017.02.133.

    Article  CAS  PubMed  Google Scholar 

  27. Alothman ZA, Wabaidur SM. Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arab J Chem. 2019;12(5):633–51. https://doi.org/10.1016/j.arabjc.2018.05.012.

    Article  CAS  Google Scholar 

  28. Yan QL, Gozin M, Zhao FQ, Cohen A, Pang SP. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale. 2016;8(9):4799–851. https://doi.org/10.1039/c5nr07855e.

    Article  CAS  PubMed  Google Scholar 

  29. Huckins JN, Booij K, Petty JD. Theory and modeling. In: Huckins JN, Booij K, Petty JD, editors. Monitors of organic chemicals in the environment: semipermeable membrane devices. Boston: Springer US; 2006. p. 45–85.

    Chapter  Google Scholar 

  30. Booij K, Vrana B, Huckins J. Chapter 7 Theory, modelling and calibration of passive samplers used in water monitoring. Compr Anal Chem. 2007;48:141–69. https://doi.org/10.1016/S0166-526X(06)48007-7.

    Article  CAS  Google Scholar 

  31. Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, et al. Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS). In: Greenwood R, Mills G, Vrana B, editors. Compr Anal Chem Elsevier; 2007. p. 171–97.

  32. Vrana B, Mills GA, Allan IJ, Dominiak E, Svensson K, Knutsson J, et al. Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem. 2005;24(10):845–68. https://doi.org/10.1016/j.trac.2005.06.006.

    Article  CAS  Google Scholar 

  33. Taylor AC, Fones GR, Vrana B, Mills GA. Applications for passive sampling of hydrophobic organic contaminants in water?A review. Review Crit Rev Anal. https://doi.org/10.1080/10408347.2019.1675043.

  34. Jeong Y, Schäffer A, Smith K. A comparison of equilibrium and kinetic passive sampling for the monitoring of aquatic organic contaminants in German rivers. Water Res. 2018;145:248–58.

    Article  CAS  Google Scholar 

  35. Hordy N, Mendoza-Gonzalez NY, Coulombe S, Meunier JL. The effect of carbon input on the morphology and attachment of carbon nanotubes grown directly from stainless steel. Carbon. 2013;63:348–57. https://doi.org/10.1016/j.carbon.2013.06.089.

    Article  CAS  Google Scholar 

  36. Zhuo CW, Wang X, Nowak W, Levendis YA. Oxidative heat treatment of 316L stainless steel for effective catalytic growth of carbon nanotubes. Appl Surf Sci. 2014;313:227–36. https://doi.org/10.1016/j.apsusc.2014.05.189.

    Article  CAS  Google Scholar 

  37. Martinez-Latorre L, Ruiz-Cebollada P, Monzon A, Garcia-Bordeje E. Preparation of stainless steel microreactors coated with carbon nanofiber layer: impact of hydrocarbon and temperature. Catal Today. 2009;147:S87–93. https://doi.org/10.1016/j.cattod.2009.07.008.

    Article  CAS  Google Scholar 

  38. Masarapu C, Wei BQ. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates. Langmuir. 2007;23(17):9046–9. https://doi.org/10.1021/la7012232.

    Article  CAS  PubMed  Google Scholar 

  39. Kruehong S, Kruehong C, Artnaseaw A. Branched carbon carbon fibres and other carbon nanomaterials grown directly from 304 stainless steel using a chemical vapour deposition process. Diam Relat Mater. 2016;64:143–52. https://doi.org/10.1016/j.diamond.2016.02.011.

    Article  CAS  Google Scholar 

  40. Duy DQ, Kim HS, Yoon DM, Lee KJ, Ha JW, Hwang YG, et al. Growth of carbon nanotubes on stainless steel substrates by DC-PECVD. Appl Surf Sci. 2009;256(4):1065–8. https://doi.org/10.1016/j.apsusc.2009.05.106.

    Article  CAS  Google Scholar 

  41. Kukovitsky EF, L’Vov SG, Sainov NA, Shustov VA, Chernozatonskii LA. Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett. 2002;355(5–6):497–503. https://doi.org/10.1016/s0009-2614(02)00283-x.

    Article  CAS  Google Scholar 

  42. Gong XY, Li K, Wu CL, Wang L, Sun HW. Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Anal Chem. 2018;17:23–33. https://doi.org/10.1016/j.teac.2018.01.002.

    Article  CAS  Google Scholar 

  43. Klopffer W. Photochemical degradation of pesticides and other chemicals in the environment - a critical-assessment of the state-of-the-art. Sci Total Environ. 1992;123:145–59. https://doi.org/10.1016/0048-9697(92)90141-e.

    Article  Google Scholar 

  44. Assoumani A, Margoum C, Chataing S, Guillemain C, Coquery M. Use of passive stir bar sorptive extraction as a simple integrative sampling technique of pesticides in freshwaters: determination of sampling rates and lag-phases. J Chromatogr A. 2014;1333:1–8. https://doi.org/10.1016/j.chroma.2014.01.063.

    Article  CAS  PubMed  Google Scholar 

  45. O’Brien D, Bartkow M, Mueller JF. Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM). Chemosphere. 2011;83(9):1290–5. https://doi.org/10.1016/j.chemosphere.2011.02.089.

    Article  CAS  PubMed  Google Scholar 

  46. Salim F, Górecki T. Theory and modelling approaches to passive sampling. Environ Sci Process Impacts. 2019;21(10):1618–41. https://doi.org/10.1039/C9EM00215D.

    Article  CAS  PubMed  Google Scholar 

  47. Taylor AC, Fones GR, Mills GA. Trends in the use of passive sampling for monitoring polar pesticides in water. Trends Anal Chem 2020:e00096. doi: https://doi.org/10.1016/j.teac.2020.e00096.

  48. Vermeirssen ELM, Bramaz N, Hollender J, Singer H, Escher BI. Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides - evaluation of three Chemcatcher (TM) configurations. Water Res. 2009;43(4):903–14. https://doi.org/10.1016/j.watres.2008.11.026.

    Article  CAS  PubMed  Google Scholar 

  49. Criquet J, Dumoulin D, Howsam M, Mondamert L, Goossens JF, Prygiel J, et al. Comparison of POCIS passive samplers vs. composite water sampling: a case study. Sci Total Environ. 2017;609:982–91. https://doi.org/10.1016/j.scitotenv.2017.07.227.

    Article  CAS  PubMed  Google Scholar 

  50. Fauvelle V, Mazzella N, Belles A, Moreira A, Allan IJ, Budzinski H. Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides. Anal Bioanal Chem. 2014;406(13):3191–9. https://doi.org/10.1007/s00216-014-7757-0.

    Article  CAS  PubMed  Google Scholar 

  51. Lu YB, Wang ZJ. Accumulation of organochlorinated pesticides by triolein-containing semipermeable membrane device (triolein-SPMD) and rainbow trout. Water Res. 2003;37(10):2419–25. https://doi.org/10.1016/s0043-1354(03)00003-4.

    Article  CAS  PubMed  Google Scholar 

  52. Challis JK, Hanson ML, Wong CS. Development and calibration of an organic-diffusive gradients in thin films aquatic passive sampler for a diverse suite of polar organic contaminants. Anal Chem. 2016;88(21):10583–91. https://doi.org/10.1021/acs.analchem.6b02749.

    Article  CAS  PubMed  Google Scholar 

  53. Petersen J, Paschke A, Gunold R, Schuurmann G. Calibration of Chemcatcher (R) passive sampler for selected highly hydrophobic organic substances under fresh and sea water conditions. Environ Sci Water Res Technol. 2015;1(2):218–26. https://doi.org/10.1039/c4ew00043a.

    Article  CAS  Google Scholar 

  54. Vermeirssen ELM, Dietschweiler C, Escher BI, van der Voet J, Hollender J. Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Anal Bioanal Chem. 2013;405(15):5225–36. https://doi.org/10.1007/s00216-013-6878-1.

    Article  CAS  PubMed  Google Scholar 

  55. Godlewska K, Jakubus A, Stepnowski P, Paszkiewicz M. Impact of environmental factors on the sampling rate of β-blockers and sulfonamides from water by a carbon nanotube-passive sampler. J Environ Sci. 2021;101:413–27. https://doi.org/10.1016/j.jes.2020.08.034.

    Article  Google Scholar 

  56. Alvarez DA. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. Techniques and Methods. Reston, VA 2010. p. 38.

  57. Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, et al. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol. 2002;36(1):85–91. https://doi.org/10.1021/es010991w.

    Article  CAS  PubMed  Google Scholar 

  58. United States Environmental Protection Agency - US EPA. Ground Water and Drinking Water. 2020 [ONLINE] Available at: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Organic. [Accessed 12 Dec 2020].

  59. Conselho Nacional do Meio Ambiente - CONAMA. RESOLUÇÃO No 357, DE 17 DE MARÇO DE 2005. 2020 [ONLINE] Available at: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. [Accessed 18 Dec 2020].

Download references

Funding

This work was supported by Companhia Energética de Minas Gerais (CEMIG) and by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de aperfeiçoamento de pessoal de nível superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenilda L. Cardeal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, E.F., de Paula, F.F., Teixeira, A.P.C. et al. Assessment of pesticides in water using time-weighted average calibration of passive sampling device manufactured with carbon nanomaterial coating on stainless steel wire. Anal Bioanal Chem 413, 3315–3327 (2021). https://doi.org/10.1007/s00216-021-03270-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03270-2

Keywords

Navigation