Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L. Micropollutants in treated wastewater. Ambio. 2020;49(2):487–503.
PubMed
Article
Google Scholar
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, et al. An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod. 2020;283:124657.
Article
CAS
Google Scholar
Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6(2):48–60.
Article
Google Scholar
Anderson J, Dubetz C, Palace V. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ. 2015;505:409–22.
CAS
PubMed
Article
Google Scholar
Newhart K. Environmental fate of malathion. California Environmental Protection Agency. 2006:1–20.
Pimentel D, Burgess M. Small amounts of pesticides reaching target insects. Environ Dev Sustain. 2012;14:1–2.
Article
Google Scholar
Reed NR, Rubin AL. Malathion. In: Richardson RJ (3rd). Encyclopedia of toxicology. Amsterdam: Elsvier; 2014. pp. 133–137.
Fritschi L, McLaughlin J, Sergi C, Calaf G, Le Curieux F, Forastiere F, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Red. 2015;114(2):70134–8.
Google Scholar
Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci. 2008;64(11):1084–98.
CAS
PubMed
Article
Google Scholar
Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser D, Krupke C, et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut R. 2015;22(1):35–67.
CAS
Article
Google Scholar
Sánchez-Bayo F. The trouble with neonicotinoids. Science. 2014;346(6211):806–7.
PubMed
Article
Google Scholar
Sheets LP. Imidacloprid. In: Richardson RJ (3rd). Encyclopedia of toxicology. Amsterdam: Elsvier; 2014. pp.1000–1003.
Wallace DR. Acetamiprid. In: Richardson RJ (3rd). Encyclopedia of toxicology. Amsterdam: Elsvier; 2014. pp.30–32.
Pesticides and bee toxicity. In: Minnesota Department of Agriculture. https://www.mda.state.mn.us/protecting/bmps/pollinators/beetoxicity. Accessed 7 Oct 2020.
Blacquiere T, Smagghe G, Van Gestel CA, Mommaerts V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology. 2012;21(4):973–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mitchell EA, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey. Science. 2017;358(6359):109–11.
CAS
PubMed
Article
Google Scholar
Nicholls CI, Altieri MA. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review Agron Sustain Dev. 2013;33(2):257–74.
Article
Google Scholar
Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 2011;37(8):1362–75.
CAS
PubMed
Article
Google Scholar
Gao D, Du L, Yang J, Wu W, Liang H. A critical review of the application of white rot fungus to environmental pollution control. Crit Rev Biotechnol. 2010;30(1):70–7.
CAS
PubMed
Article
Google Scholar
Ganash M, Abdel Ghany T, Reyad A. Pleurotus ostreatus as a biodegradator for organophosphorus insecticide malathion. J Environ Anal Toxicol. 2016;6(3):369.
Google Scholar
Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R. Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation. 2003;14(6):397–406.
CAS
PubMed
Article
Google Scholar
Singh BK, Walker A. Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev. 2006;30(3):428–71.
CAS
PubMed
Article
Google Scholar
Mori T, Wang J, Tanaka Y, Nagai K, Kawagishi H, Hirai H. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater. 2017;321:586–90.
CAS
PubMed
Article
Google Scholar
Wang J, Hirai H, Kawagishi H. Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol. 2012;93(2):831–5.
CAS
PubMed
Article
Google Scholar
Wang J, Ohno H, Ide Y, Ichinose H, Mori T, Kawagishi H, et al. Identification of the cytochrome P450 involved in the degradation of neonicotinoid insecticide acetamiprid in Phanerochaete chrysosporium. J Hazard Mater. 2019;371:494–8.
CAS
PubMed
Article
Google Scholar
Wang J, Tanaka Y, Ohno H, Jia J, Mori T, Xiao T, et al. Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624. Environ Pollut. 2019;252:856–62.
CAS
PubMed
Article
Google Scholar
Mori T, Ohno H, Ichinose H, Kawagishi H, Hirai H. White-rot fungus Phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an N-dealkylation reaction catalyzed by two cytochrome P450s. J Hazard Mater. 2020;402:123831.
PubMed
Article
CAS
Google Scholar
Blánquez P, Casas N, Font X, Gabarrell X, Sarrà M, Caminal G, et al. Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res. 2004;38(8):2166–72.
PubMed
Article
CAS
Google Scholar
Kirk TK, Schultz E, Connors W, Lorenz L, Zeikus J. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol. 1978;117(3):277–85.
CAS
Article
Google Scholar
Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere. 2009;74(6):765–72.
CAS
PubMed
Article
Google Scholar
Wariishi H, Valli K, Gold MH. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992;267(33):23688–95.
CAS
PubMed
Article
Google Scholar
Ecological Structure Activity Relationships (ECOSAR) Predictive Model. In: US Environmental Protection Agency. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model. Accessed 13 Oct 2020.
EFSA. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J. 2013;11(7):3290.
Google Scholar
Anhalt JC, Moorman TB, Koskinen WC. Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health B. 2007;42(5):509–14.
CAS
PubMed
Article
Google Scholar
Kandil MM, Trigo C, Koskinen WC, Sadowsky MJ. Isolation and characterization of a novel imidacloprid-degrading Mycobacterium sp. strain MK6 from an Egyptian soil. J Agric Food Chem. 2015;63(19):4721–7.
CAS
PubMed
Article
Google Scholar
Singh B, Kaur J, Singh K. Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol. 2012;28(3):1133–41.
CAS
PubMed
Article
Google Scholar
Zeinat Kamal M, Nashwa A, Mohamed AI, Sherif EN. Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Aust J Basic Appl Sci. 2008;2(3):724–32.
Google Scholar
Hu K, Torán J, López-García E, Barbieri MV, Postigo C, de Alda ML, et al. Fungal bioremediation of diuron-contaminated waters: evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. Sci Total Environ. 2020;743:140628.
CAS
PubMed
Article
Google Scholar
Mir-Tutusaus JA, Masís-Mora M, Corcellas C, Eljarrat E, Barceló D, Sarrà M, et al. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci Total Environ. 2014;500:235–42.
PubMed
Article
CAS
Google Scholar
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.
CAS
PubMed
Article
Google Scholar
Singh B, Kaur J, Singh K. Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol. 2014;40(2):146–54.
CAS
PubMed
Article
Google Scholar
Paris DF, Lewis DL, Wolfe NL. Rates of degradation of malathion by bacteria isolated from aquatic system. Environ Sci Technol. 1975;9(2):135–8.
CAS
Article
Google Scholar
Goda SK, Elsayed IE, Khodair TA, El-Sayed W, Mohamed ME. Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria. Biodegradation. 2010;21(6):903–13.
CAS
PubMed
Article
Google Scholar
Mostafa I, Bahig M, Fakhr I, Adam Y. Metabolism of organophosphorus insecticides, XIV malathion breakdown by soil fungi. Z Naturforsch B. 1972;27(9):1115–6.
CAS
PubMed
Article
Google Scholar
Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem. 2011;59(7):2923–31.
CAS
PubMed
Article
Google Scholar
Liu Z, Dai Y, Huan Y, Liu Z, Sun L, Zhou Q, et al. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Appl Microbiol Biotechnol. 2013;97(14):6537–47.
CAS
PubMed
Article
Google Scholar
Ma Y, Zhai S, Mao SY, Sun SL, Wang Y, Liu ZH, et al. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648. J Environ Sci Health B. 2014;49(9):661–70.
CAS
PubMed
Article
Google Scholar
Sharma S, Singh B, Gupta V. Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus. Environ Monit Assess. 2014;186(11):7183–93.
CAS
PubMed
Article
Google Scholar
Diari Oficial de la Generalitat de Catalunya (DOGC). DECRET 130/2003. 2003. https://portaljuridic.gencat.cat/ca/document-del-pjur/?documentId=322238. Accessed 16 Oct 2020.
Winder C, Azzi R, Wagner D. The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals. J Hazard Mater. 2005;125(1–3):29–44.
CAS
PubMed
Article
Google Scholar