Skip to main content

Advertisement

Log in

Prediction of tumor size in patients with invasive ductal carcinoma using FT-IR spectroscopy combined with chemometrics: a preliminary study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Precise detection of tumor size is essential for early diagnosis, treatment, and evaluation of the prognosis of breast cancer. However, there are some errors between the tumor size of breast cancer measured by conventional imaging methods and the pathological tumor size. Invasive ductal carcinoma (IDC) is a common pathological type of breast cancer. In this study, serum Fourier transform infrared spectroscopy (FT-IR) combined with chemometric methods was used to predict the maximum diameter and maximum vertical diameter of tumors in IDC patients. Three models were evaluated based on the pathological tumor size measured after surgery and included grid search support vector machine regression (GS-SVR), back propagation neural network optimized by genetic algorithm (GA-BP-ANN), and back propagation neural network optimized by particle swarm optimization (PSO-BP-ANN). The results show that three models can accurately predict tumor size. The GA-BP-ANN model provided the best fitting quality of the largest tumor diameter with the determination coefficients of 0.984 in test set. And the GS-SVR model provided the best fitting quality of the largest vertical tumor diameter with the determination coefficients of 0.982 in test set. The GS-SVR model had the highest prediction efficiency and the lowest time complexity of the models. The results indicate that serum FT-IR spectroscopy combined with chemometric methods can predict tumor size in IDC patients. In addition, compared with traditional imaging methods, we found that the experimental results of the three models are better than traditional imaging methods in terms of correlation and fitting degree. And the average fitting error of PSO-BP-ANN and GA-BP-ANN models was less than 0.3 mm. The minimally invasive detection method is expected to be developed into a new clinical diagnostic method for tumor size estimation to reduce the diagnostic trauma of patients and provide new diagnostic experience for patients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomassin-Naggara I, Siles P, Trop I, Chopier J, Darai E, Bazot M, et al. How to measure breast cancer tumoral size at MR imaging? Eur J Radiol. 2013;82(12). https://doi.org/10.1016/j.ejrad.2013.08.002.

  2. Leddy R, Irshad A, Metcalfe A, Mabalam P, Abid A, Ackerman S, et al. Comparative accuracy of preoperative tumor size assessment on mammography, sonography, and MRI: is the accuracy affected by breast density or cancer subtype? J Clin Ultrasound. 2016:17–25. https://doi.org/10.1002/jcu.22290.

  3. A FS. Breast masses. Mammographic and sonographic evaluation. Radiologic clinics of North America. 1992;30(1).

  4. Lai H-W, Chen S-T, Chen D-R, Wu H-K, Kuo S-J, Chen C-J. Comparison of the diagnostic accuracy of magnetic resonance imaging with sonography in the prediction of breast cancer tumor size: a concordance analysis with histopathologically determined tumor size. Ultrasound Med Biol. 2017;43. https://doi.org/10.1016/j.ultrasmedbio.2017.08.1016.

  5. D FB, O T, M M. Clinical, mammographic, and sonographic determination of preoperative breast cancer size. Cancer. 1987;60(4).

  6. Rebecca L, Abid I, Allie M, Pramod M, Ahad A, Susan A, et al. Comparative accuracy of preoperative tumor size assessment on mammography, sonography, and MRI: is the accuracy affected by breast density or cancer subtype? J Clin Ultrasound. 2016;44(1). https://doi.org/10.1002/jcu.22290.

  7. Haraldsdottir KH, Jonsson T, Halldorsdottir AB, Tranberg KG, Asgeirsson KS. Tumor size of invasive breast cancer on magnetic resonance imaging and conventional imaging (mammogram/ultrasound): comparison with pathological size and clinical implications. Scand J Surg. 2016;106(1):68. https://doi.org/10.1177/1457496916631855.

    Article  PubMed  Google Scholar 

  8. Weber JJ, Bellin LS, Milbourn DE, Verbanac KM, Wong JH. Selective preoperative magnetic resonance imaging in women with breast cancer: no reduction in the reoperation rate. Arch Surg. 2012;147(9):834–9.

    Article  Google Scholar 

  9. Dummin LJ, Cox M, Plant L. Prediction of breast tumor size by mammography and sonography--a breast screen experience. Breast. 2007;16(1):38–46. https://doi.org/10.1016/j.breast.2006.04.003.

    Article  CAS  PubMed  Google Scholar 

  10. González-Sistal A, Sánchez AB, Ma CDR, Arias JI, Ruibal A. Association between tumor size and immunohistochemical expression of Ki-67, p53 and BCL2 in a node-negative breast cancer population selected from a breast cancer screening program. Anticancer Res. 2014;34(1):269–73. https://doi.org/10.1016/j.lungcan.2013.10.009.

    Article  PubMed  Google Scholar 

  11. Bunaciu AA, Hoang VD, Aboul-Enein HY. Applications of FT-IR spectrophotometry in cancer diagnostics. Crit Rev Anal Chem. 2015;45(2):156–65. https://doi.org/10.1080/10408347.2014.904733.

    Article  CAS  PubMed  Google Scholar 

  12. Kochan K, Maslak E, Chlopicki S, Baranska M. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver. Analyst. 2015;140(15):4997–5002. https://doi.org/10.1039/c5an00737b.

    Article  CAS  PubMed  Google Scholar 

  13. Fatemeh, Elmi, Afshin, Fayyaz, Movaghar, Maryam et al. Application of FT-IR spectroscopy on breast cancer serum analysis. Spectrochim Acta Part A Molecular & Biomolecular Spectroscopy. 2017. https://doi.org/10.1016/j.saa.2017.06.021.

  14. Liu KZ, Anthony SR, Man A, Dembinski TC, Mantsch HH. Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy. Clin Chem. 2002;3:499–506. https://doi.org/10.1016/S0009-9120(02)00282-5.

    Article  Google Scholar 

  15. Chen HZ, Song QQ, Shi K, Jia Z. Multidimensional scaling linear regression applied to FTIR spectral quantitative analysis of clinical parameters of human blood serum. Spectrosc Spectr Anal. 2015;35(4):914. https://doi.org/10.3964/j.issn.1000-0593(2015)04-0914-05.

    Article  CAS  Google Scholar 

  16. Chu XL, Yuan HF, Lu WZ. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Prog Chem. 2004;16(4):528–42. https://doi.org/10.1016/j.jco.2003.08.015.

    Article  CAS  Google Scholar 

  17. Laghi L, Versari A, Parpinello GP, Nakaji DY, Boulton RB. FTIR spectroscopy and direct orthogonal signal correction preprocessing applied to selected phenolic compounds in red wines. Food Anal Methods. 2011;4(4):619–25. https://doi.org/10.1007/s12161-011-9240-2.

    Article  Google Scholar 

  18. Barmpalexis P, Karagianni A, Nikolakakis I, Kachrimanis K. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. J Pharm Biomed Anal. 2018;158. https://doi.org/10.1016/j.jpba.2018.06.004.

  19. Li Y, Tang X, Liu J. Application of direct orthogonal signal correction algorithm in multi-component alkane quantitative analysis. Spectrosc Spectr Anal. 2012;32(4):1038. https://doi.org/10.3964/j.issn.1000-0593(2012)04-1038-05.

    Article  CAS  Google Scholar 

  20. Freitas DLD, Camara IM, Silva PP, Wanderley NRS, Alves MBC, Morais CLM, et al. Spectrochemical analysis of liquid biopsy harnessed to multivariate analysis towards breast cancer screening. Sci Rep. 2020;10(1):12818. https://doi.org/10.1038/s41598-020-69800-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morais CLM, Lima KMG, Singh M, Martin FL. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat Protoc. 2020;15(7):2143–62. https://doi.org/10.1038/s41596-020-0322-8.

    Article  CAS  PubMed  Google Scholar 

  22. Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, et al. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018;10(4):627. https://doi.org/10.3390/rs10040627.

    Article  Google Scholar 

  23. XL C. Molecular spectroscopy analytical technology combined with chemometrics and its applications. Beijing: Chemical Industry Press, China; 2011.

  24. Vladimir Vapnik SEG, Smola A. Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Proces Syst. 2008;9:281–7.

    Google Scholar 

  25. Weng S, Qiu M, Dong R, Wang F, Zhao J, Huang L, et al. Quantitative determination of chlormequat chloride residue in wheat using surface-enhanced Raman spectroscopy. Int J Anal Chem. 2018;2018:1–8. https://doi.org/10.1155/2018/6146489.

    Article  CAS  Google Scholar 

  26. Cai Y, Yang C, Xu D, Gui W. Quantitative analysis of stibnite content in raw ore by Raman spectroscopy and chemometric tools. J Raman Spectrosc. 2019;50(3). https://doi.org/10.1002/jrs.5527.

  27. Jie L, Hong C, Xiaoyi L, Zhaoxia Z, Xiangxiang Z, Guohua W, et al. Use of FT-IR spectroscopy combined with SVM as a screening tool to identify invasive ductal carcinoma in breast cancer. Optik. 2019;204. https://doi.org/10.1016/j.ijleo.2020.164225.

  28. Chen C, Du G, Tong D, Lv G, Mo J. Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction. J Biophotonics. 2019. https://doi.org/10.1002/jbio.201900099.

  29. Joffre SM, Laurila T. Standard deviations of wind speed and direction from observations over a smooth surface. J Appl Meteorol. 2010;27(5):550–61. https://doi.org/10.1175/1520-0450(1988)027<0550:SDOWSA>2.0.CO;2.

    Article  Google Scholar 

  30. Balan B, Dhaulaniya AS, Jamwal R, Amit, Sodhi KK, Kelly S, et al. Application of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of formalin in cow milk. Vib Spectrosc. 2020;107:103033. https://doi.org/10.1016/j.vibspec.2020.103033.

    Article  CAS  Google Scholar 

  31. Menevseoglu A, Aykas DP, Adal E. Non-targeted approach to detect green pea and peanut adulteration in pistachio by using portable FT-IR, and UV–vis spectroscopy. J Food Meas Charact. 2020. https://doi.org/10.1007/s11694-020-00710-y.

  32. Saif FA, Yaseen SA, Alameen AS, Mane SB, Undre PB. Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV-vis spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2021;246:119010. https://doi.org/10.1016/j.saa.2020.119010.

    Article  CAS  PubMed  Google Scholar 

  33. Cuesta Cuesta AB, Martín Ríos MD, Noguero Meseguer MR, García Velasco JA, Matías Martínez M, Bartolomé Sotillos S, et al. Accuracy of tumor size measurements performed by magnetic resonance, ultrasound and mammography, and their correlation with pathological size in primary breast cancer. Cirugía Española (English edition). 2019;97(7):391–6. https://doi.org/10.1016/j.cireng.2019.08.001.

    Article  Google Scholar 

  34. A., B., Miller, MB, FRCP, B. et al. Reporting results of cancer treatment. Cancer. 1981.

  35. Morais CLM, Santos MCD, Lima KMG, Martin FL. Improving data splitting for classification applications in spectrochemical analyses employing a random-mutation Kennard-Stone algorithm approach. Bioinformatics. 2019;35(24):5257–63. https://doi.org/10.1093/bioinformatics/btz421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duarte E, Wainer J. Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters. Pattern Recogn Lett. 2017;88. https://doi.org/10.1016/j.patrec.2017.01.007.

  37. Jug T, Boni S, Košmerl T, Aurand JM. FTIR analysis of ash in wine. Bio Web of Conferences. 2017;9. https://doi.org/10.1051/bioconf/20170902023.

  38. Michael Eberle GH. About intrinsic errors of optical planarity measurements. Optik. 2009;120(6):251–6. https://doi.org/10.1016/j.ijleo.2007.09.002.

    Article  Google Scholar 

  39. Gupta MJ, Irudayaraj JM, Schmilovitch Z, Mizrach A. Identification and quantification of foodborne pathogens in different food matrices using FTIR spectroscopy and artificial neural networks. Trans ASABE. 2006;49(4):1249–55. https://doi.org/10.13031/2013.21708.

    Article  CAS  Google Scholar 

  40. Smilde JWSJA. Direct orthogonal signal correction. 2001;56(1):13–25. https://doi.org/10.1016/s0169-7439(01)00102-2.

  41. Fang H, Zou Q, He Y, Li XL. Detection of activity of POD in tomato leaves based on hyperspectral imaging technology 2012. https://doi.org/10.3964/j.issn.1000-0593(2012)08-2228-06.

  42. Luypaert J, Heuerding S, Massart DL, Heyden YV. Direct orthogonal signal correction as data pretreatment in the classification of clinical lots of creams from near infrared spectroscopy data. Anal Chim Acta. 2007;582(1):181–9. https://doi.org/10.1016/j.aca.2006.09.029.

    Article  CAS  PubMed  Google Scholar 

  43. Soliman NF, Mohamed E, Magdi F, El-Samie FEA, Abdelnaby M. Efficient iris localization and recognition. Optik. 2017:469–75. https://doi.org/10.1016/j.ijleo.2016.11.150.

  44. Ana, Cristina, da, Silva, Sousa, Manuel et al. Daylight photodynamic therapy in 25 patients with actinic keratosis and evaluation of efficacy by confocal microscopy. Photodiagn Photodyn Ther. 2019. https://doi.org/10.1016/j.pdpdt.2019.02.001.

  45. Sun F, Yu J, Jiao S. Fault diagnosis algorithm for LED lamp driven by segmented linear solution in indoor environment via illumination waveform fluctuation similarity calculation. Optik (Stuttg). 2019;189. https://doi.org/10.1016/j.ijleo.2019.05.055.

  46. Zhang Y, Chen L, Zhao Z, Jia J, Liu J. Multi-focus image fusion based on robust principal component analysis and pulse-coupled neural network. Optik. 2014;125(17):5002–6. https://doi.org/10.1016/j.ijleo.2014.04.002.

    Article  Google Scholar 

  47. Martin FL, German MJ, Wit E, Fearn T, Ragavan N, Pollock HM. Identifying variables responsible for clustering in discriminant analysis of data from infrared microspectroscopy of a biological sample. J Comput Biol. 2007;14(9):1176–84. https://doi.org/10.1089/cmb.2007.0057.

    Article  CAS  PubMed  Google Scholar 

  48. Svante, Wold, and, Kim, Esbensen, and et al. Principal component analysis. Chemometrics & Intelligent Laboratory Systems. 1987. https://doi.org/10.1016/0169-7439(87)80084-9.

  49. Zhu C, Zhang J, Liu Y, Ma D, Li M, Xiang B. Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China. Natural Hazards Journal of the International Society for the Prevention & Mitigation of Natural Hazards. 2020;100. https://doi.org/10.1007/s11069-019-03806-x.

  50. Chen C, Yang L, Li H, Chen F, Tang J. Raman spectroscopy combined with multiple algorithms for analysis and rapid screening of chronic renal failure. Photodiagn Photodyn Ther. 2020;30:101792. https://doi.org/10.1016/j.pdpdt.2020.101792.

    Article  CAS  Google Scholar 

  51. Yang A, Wang X, Qu Z, Liao T, Nan Z. Fiber Bragg grating temperature calibration based on BP neural network. Optik. 2018;172:753–9. https://doi.org/10.1016/j.ijleo.2018.07.064.

    Article  CAS  Google Scholar 

  52. Zhang H, Cheng C, Gao R, Yan Z, Huang Z. Rapid identification of cervical adenocarcinoma and cervical squamous cell carcinoma tissue based on Raman spectroscopy combined with multiple machine learning algorithms. Photodiagn Photodyn Ther. 2021;33:102104. https://doi.org/10.1016/j.pdpdt.2020.102104.

    Article  CAS  Google Scholar 

  53. Blum A. Neural networks in C++. 1992.

    Google Scholar 

  54. Mohamad ET, Armaghani DJ, Momeni E, Yazdavar AH, Ebrahimi M. Rock strength estimation: a PSO-based BP approach. Neural Comput Applic. 2016. https://doi.org/10.1007/s00521-016-2728-3.

  55. Sarah Ines Ramirez MS, Buckmaster J, Paley RH, Kowdley GC. Breast cancer tumor size assessment with mammography, ultrasonography, and magnetic resonance imaging at a community based multidisciplinary breast center. Am Surg. 2012;78(4). https://doi.org/10.1177/000313481207800435.

  56. Luparia A, Mariscotti G, Durando M, Ciatto S, Bosco D, Campanino PP, et al. Accuracy of tumour size assessment in the preoperative staging of breast cancer: comparison of digital mammography, tomosynthesis, ultrasound and MRI. Radiol Med. 2013;118(7):1119–36. https://doi.org/10.1007/s11547-013-0941-z.

    Article  PubMed  Google Scholar 

  57. Ines V, Gruber MR, Kagan KO, Staebler A, Siegmann KC, Hartkopf A, et al. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BioMed Central. 2013;13(1). https://doi.org/10.1186/1471-2407-13-328.

  58. Afrose DMAAK. Comparison of the accuracy of MRI, sonography and mammography in predicting the preoperative breast tumor size measurements. J Med Sci Clin Res. 2016. https://doi.org/10.18535/jmscr/v4i9.35.

  59. Cortadellas T, Argacha P, Acosta J, Rabasa J, Peiro R, Gomez M, et al. Estimation of tumor size in breast cancer comparing clinical examination, mammography, ultrasound and MRI-correlation with the pathological analysis of the surgical specimen. Gland Surg. 2017;6(4):330–5. https://doi.org/10.21037/gs.2017.03.09.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aguilar Angulo PM, Castellano C, Casado M, Sanchez-Camacho P, Vizcaino V. Preoperative breast cancer tumor size assessment. Comparison of mammography, tomosynthesis, ultrasound and magnetic resonance imaging in a multidiscliplinary breast center. 2019.

  61. Tao Yong LX, Yuehua L, Xun Z. A clinical study on the accuracy of preoperative tumor size evaluation in patients with breast cancer by different imaging examinations. Chin Med Sci J. 2019;25(3):252–5. https://doi.org/10.19627/j.cnki.cn31-1700/th.2019.03.008.

    Article  Google Scholar 

  62. Streng M, Ignatov A, Reinisch M, Costa SD, Eggemann H. A comparison of tumour size measurements with palpation, ultrasound and mammography in male breast cancer: first results of the prospective register study. J Cancer Res Clin Oncol. 2018;144(2):381–7. https://doi.org/10.1007/s00432-017-2554-8.

    Article  PubMed  Google Scholar 

  63. Borden JT, Man A, Scott DA, Liu KZ. Tobacco-induced alterations to the Fourier-transform infrared spectrum of serum. J Mol Med. 2003;81(12):788–94. https://doi.org/10.1007/s00109-003-0490-3.

    Article  CAS  PubMed  Google Scholar 

  64. Asseryanis A, Ruecklinger E, Hellan M, Kubista E, Singer CF. Breast cancer size in postmenopausal women is correlated with body mass index and androgen serum levels. Gynecol Endocrinol. 2004;18(1):29–36. https://doi.org/10.1080/09513590310001651759.

    Article  CAS  PubMed  Google Scholar 

  65. Quarmby VE, Korach KS. Differential regulation of protein synthesis by estradiol in uterine component tissues. Endocrinology. 1984;2:687–97. https://doi.org/10.1210/endo-115-2-687.

    Article  Google Scholar 

  66. Sheng D, Liu X, Li W, Wang Y, Chen X, Wang X. Distinction of leukemia patients’ and healthy persons’ serum using FTIR spectroscopy. Spectrochim Acta Part A Molecular & Biomolecular Spectroscopy. 2013;101(none). https://doi.org/10.1016/j.saa.2012.09.072.

  67. Rai V, Mukherjee R, Routray A, Ghosh AK, Chakraborty C. Serum-based diagnostic prediction of oral submucous fibrosis using FTIR spectrometry. Spectrochim Acta Part A Molecular & Biomolecular Spectroscopy. 2017;189:322. https://doi.org/10.1016/j.saa.2017.08.018.

    Article  CAS  Google Scholar 

  68. Xin WA, A QW, Chao LB, Yuan ZA, C FX, Ling ZA et al. A study of Parkinson’s disease patients’ serum using FTIR spectroscopy. Infrared Physics & Technology.106. https://doi.org/10.1016/j.infrared.2020.103279.

  69. Sitnikova VE, Kotkova MA, Nosenko TN, Kotkova TN, Uspenskaya MV. Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta. 2020;214:120857. https://doi.org/10.1016/j.talanta.2020.120857.

    Article  CAS  PubMed  Google Scholar 

  70. Juergen Backhaus RM, Formanski N, Szlama N, Meerpohl H-G, Eidt M, Bugert P. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib Spectrosc. 2010;52(2):173–7. https://doi.org/10.1016/j.vibspec.2010.01.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support received from the Graduate Student Innovation Project of Xinjiang Uygur Autonomous Region (XJ2020G061). We sincerely thank the two anonymous referees for their constructive comments on this paper and all these comments have played a good role in enriching our paper. In addition, we gratefully acknowledge the assistance of Jong Uk Lee in the spectrum acquisition.

Funding

This work was supported by Graduate the Student Innovation Project of Xinjiang Uygur Autonomous Region (XJ2020G061) and the Science and Technology Project on aid to Xinjiang Uygur Autonomous Region under Grant 2019E0215.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Chen or Xiaoyi Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Chen, C., Chen, C. et al. Prediction of tumor size in patients with invasive ductal carcinoma using FT-IR spectroscopy combined with chemometrics: a preliminary study. Anal Bioanal Chem 413, 3209–3222 (2021). https://doi.org/10.1007/s00216-021-03258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03258-y

Keywords

Navigation