Utilization of a NIST SRM: a case study for per- and polyfluoroalkyl substances in NIST SRM 1957 organic contaminants in non-fortified human serum

Abstract

The National Institute of Standards and Technology (NIST) generates and maintains thousands of Standard Reference Materials (SRMs) to serve commerce worldwide. Many SRMs contain metrologically traceable mass fractions of known organic chemicals and are commercially available to aid the analytical chemistry community. One such material, NIST SRM 1957 Organic Contaminants in Non-Fortified Human Serum, was one of the first materials issued by NIST with measurements for per- and polyfluoroalkyl substances (PFAS) listed on the Certificate of Analysis and was commercially available in 2009. Since the release of SRM 1957, nearly 400 units have been sold to date, and over 50 publications related to PFAS measurements have included this material for multiple analytical purposes, such as a quality control material, for interlaboratory comparison, as an in-house comparison tool, for inter- and intra-day measurement accuracy, as an indicator of isomeric patterns of PFAS, and for other uses. This perspective details the ways SRM 1957 is utilized by the analytical community and how data have been reported in the literature. A discussion on accurately comparing SRM data to generated data is included. Furthermore, we conducted an in-depth investigation around additional applications for NIST SRMs, such as a matrix-matched reference material, and for the identification of targeted compounds during high-resolution mass spectrometry data collection. Ultimately, this manuscript illustratively describes the ways to utilize a NIST SRMs for chemicals of emerging concern.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Not applicable.

References

  1. 1.

    The National Institute of Standards and Technology (2010) Standard Reference Materials, About NIST SRMs. https://www.nist.gov/srm/about-nist-srms. Accessed Accessed 07–14 2020.

  2. 2.

    Wise SA, Poster DL, Kucklick JR, Keller JM, Vanderpol SS, Sander LC, et al. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem. 2006;386(4):1153–90. https://doi.org/10.1007/s00216-006-0719-4.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Beauchamp CR, Camara JE, Carney J, Choquette SJ, Cole KD, Derose PC, et al. Metrological Tools for the Reference Materials and Reference Instruments of the NIST Material Measurement Laboratory. Natl Inst Stand Technol Spec Publ. 2020;260(62).

  4. 4.

    The National Institute of Standards and Technology (2016) Certificate of Analysis, Standards Reference Material 1957. https://www-s.nist.gov/srmors/certificates/1957.pdf. Accessed Accessed 07–14 2020.

  5. 5.

    Boiteux V, Bach C, Sagres V, Hemard J, Colin A, Rosin C, et al. Analysis of 29 per- and polyfluorinated compounds in water, sediment, soil and sludge by liquid chromatography-tandem mass spectrometry. Int J Environ Anal Chem. 2016;96(8):705–28. https://doi.org/10.1080/03067319.2016.1196683.

    CAS  Article  Google Scholar 

  6. 6.

    D’Agostino LA, Mabury SA. Certain perfluoroalkyl and polyfluoroalkyl substances associated with aqueous film forming foam are widespread in Canadian surface waters. Env Sci Technol. 2017;51(23):13603–13. https://doi.org/10.1021/acs.est.7b03994.

    CAS  Article  Google Scholar 

  7. 7.

    Krafft MP, Riess JG. Per- and polyfluorinated substances (PFASs): environmental challenges. Curr Opin Colloid In. 2015;20(3):192–212. https://doi.org/10.1016/j.cocis.2015.07.004.

    CAS  Article  Google Scholar 

  8. 8.

    Buck R, Franklin J, Berger U, Conder J, Cousins I, Pd V, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classsifications, and origins. Integr Environ Assess Man. 2011;7:513.

    CAS  Article  Google Scholar 

  9. 9.

    Krafft MP, Riess JG. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability. Part one. Chemosphere. 2015;129:4–19. https://doi.org/10.1016/j.chemosphere2014.08.039.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang ZY, Cousins IT, Scheringer M, Hungerbuhler K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment Int. 2013;60:242–8. https://doi.org/10.1016/j.envint.2013.08.021.

    CAS  Article  Google Scholar 

  11. 11.

    3M (1999) The science of organic fluorochemistry. US EPA document OPPT-2002-0043-0006. The document can be found: http://www.fluoridealert.org/wp-content/pesticides/pfos.fr.final.docket.0006.pdf. http://www.fluoridealert.org/wp-content/pesticides/pfos.fr.final.docket.0006.pdf

  12. 12.

    Prevedouros K, Cousins I, Buck R, Korzeniowski S. Sources, fate, and transport of perfluorocarboxylates. Env Sci Technol. 2006;40(1):32–44.

    CAS  Article  Google Scholar 

  13. 13.

    The National Institute of Standards and Technology (2020) 109.5 - perfluorinated and polyfluorinated alkyl substances (PFAS). https://www-s.nist.gov/srmors/viewTable.cfm?tableid=247. Accessed Accessed 07–14 2020.

  14. 14.

    Rosenblum LW S (2019) Method 533. Determination of per- and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry.

  15. 15.

    Shoemaker J, BGrimmett P, Boutin B (2009) Method 537. Determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). US EPA, Cincinnati.

  16. 16.

    Riddell N, Arsenault G, Benskin JP, Chittim B, Martin JW, McAlees A, et al. Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS). Env Sci Technol. 2009;43(20):7902–8. https://doi.org/10.1021/es901261v.

    CAS  Article  Google Scholar 

  17. 17.

    Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? J Environ Monit. 2010;12(11):1979–2004. https://doi.org/10.1039/c0em00295j.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Toms LML, Bräunig J, Vijayasarathy S, Phillips S, Hobson P, Aylward LL, et al. Per- and polyfluoroalkyl substances (PFAS) in Australia: current levels and estimated population reference values for selected compounds. Int J Hyg Envir Heal. 2019;222(3):387–94. https://doi.org/10.1016/j.ijheh.2019.03.004.

    CAS  Article  Google Scholar 

  19. 19.

    Garcia LAA (2018) PFAS bioaccumulation in Antarctic breeding south polar skua (Catharacta maccormicki) and its prey items. University of Oslo. Thesis.

  20. 20.

    Munoz G, Labadie P, Geneste E, Pardon P, Tartu S, Chastel O, et al. Biomonitoring of fluoroalkylated substances in Antarctica seabird plasma: development and validation of a fast and rugged method using on-line concentration liquid chromatography tandem mass spectrometry. J Chromatogr A. 2017;1513:107–17. https://doi.org/10.1016/j.chroma.2017.07.024.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Salihovic S, Kärrman A, Lindström G, Lind PM, Lind L, van Bavel B. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2013;1305:164–70. https://doi.org/10.1016/j.chroma.2013.07.026.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Stubleski J, Salihovic S, Lind L, Lind PM, van Bavel B, Kärrman A. Changes in serum levels of perfluoroalkyl substances during a 10-year follow-up period in a large population-based cohort. Environ Int. 2016;95:86–92. https://doi.org/10.1016/j.envint.2016.08.002.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Salihovic S, Stubleski J, Kärrman A, Larsson A, Fall T, Lind L, et al. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - a longitudinal study. Environ Int. 2018;117:196–203. https://doi.org/10.1016/j.envint.2018.04.052.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Salihović S, Dickens AM, Schoultz I, Fart F, Sinisalu L, Lindeman T, et al. Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2020;412(10):2251–9. https://doi.org/10.1007/s00216-019-02263-6.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gyllenhammar I, Benskin JP, Sandblom O, Berger U, Ahrens L, Lignell S, et al. Perfluoroalkyl acids (PFAAs) in children’s serum and contribution from PFAA-contaminated drinking water. Env Sci Technol. 2019;53(19):11447–57. https://doi.org/10.1021/acs.est.9b01746.

    CAS  Article  Google Scholar 

  26. 26.

    Nakayama SF, Isobe T, Iwai-Shimada M, Kobayashi Y, Nishihama Y, Taniguchi Y, et al. Poly- and perfluoroalkyl substances in maternal serum: method development and application in pilot study of the Japan environment and children’s study. J Chrom A. 1618;2020:460933. https://doi.org/10.1016/j.chroma.2020.460933.

    CAS  Article  Google Scholar 

  27. 27.

    O’Connell SG, Arendt M, Segars A, Kimmel T, Braun-McNeill J, Avens L, et al. Temporal and spatial trends of perfluorinated compounds in juvenile loggerhead sea turtles (Caretta caretta) along the East Coast of the United States. Env Sci Technol. 2010;44(13):5202–9. https://doi.org/10.1021/es9036447.

    CAS  Article  Google Scholar 

  28. 28.

    Huber S, Brox J. An automated high-throughput SPE micro-elution method for perfluoroalkyl substances in human serum. Anal Bioanal Chem. 2015;407(13):3751–61. https://doi.org/10.1007/s00216-015-8601-x.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lee H, Mabury SA. A pilot survey of legacy and current commercial fluorinated chemicals in human sera from United States donors in 2009. Env Sci Technol. 2011;45(19):8067–74. https://doi.org/10.1021/es200167q.

    CAS  Article  Google Scholar 

  30. 30.

    Russell MC, Newton SR, McClure KM, Levine RS, Phelps LP, Lindstrom AB, et al. Per- and polyfluoroalkyl substances in two different populations of northern cardinals. Chemosphere. 2019;222:295–304. https://doi.org/10.1016/j.chemosphere.2019.01.112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Costantini D, Blévin P, Herzke D, Moe B, Gabrielsen GW, Bustnes JO, et al. Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids. Environ Res. 2019;168:278–85. https://doi.org/10.1016/j.envres.2018.10.003.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Spaan KM, van Noordenburg C, Plassmann MM, Schultes L, Shaw S, Berger M, et al. Fluorine mass balance and suspect screening in marine mammals from the Northern Hemisphere. Env Sci Technol. 2020;54(7):4046–58. https://doi.org/10.1021/acs.est.9b06773.

    CAS  Article  Google Scholar 

  33. 33.

    Rotander A, Kärrman A, Toms LM, Kay M, Mueller JF, Gómez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Env Sci Technol. 2015;49(4):2434–42. https://doi.org/10.1021/es503653n.

    CAS  Article  Google Scholar 

  34. 34.

    Pan Y, Wang J, Yeung LWY, Wei S, Dai J. Analysis of emerging per- and polyfluoroalkyl substances: progress and current issues. TRAC-Trend Anal Chem. 2020;124:115481. https://doi.org/10.1016/j.trac.2019.04.013.

    CAS  Article  Google Scholar 

  35. 35.

    Lauritzen HB, Larose TL, Øien T, Odland JØ, van de Bor M, Jacobsen GW, et al. Factors associated with maternal serum levels of perfluoroalkyl substances and organochlorines: a descriptive study of parous women in Norway and Sweden. PLoS One. 2016;11(11):e0166127. https://doi.org/10.1371/journal.pone.0166127.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lee JH, Lee CK, Suh C-H, Kang H-S, Hong C-P, Choi S-N. Serum concentrations of per- and poly-fluoroalkyl substances and factors associated with exposure in the general adult population in South Korea. Int J Hyg Envir Heal. 2017;220(6):1046–54. https://doi.org/10.1016/j.ijheh.2017.06.005.

    CAS  Article  Google Scholar 

  37. 37.

    Sletten S, Bourgeon S, Bårdsen BJ, Herzke D, Criscuolo F, Massemin S, et al. Organohalogenated contaminants in white-tailed eagle (Haliaeetus albicilla) nestlings: an assessment of relationships to immunoglobulin levels, telomeres and oxidative stress. Sci Total Environ. 2016;539:337–49. https://doi.org/10.1016/j.scitotenv.2015.08.123.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ask AV (2015) Perfluoroalkyl and polyfluoroalkyl substances (PFASs) affect the thyroid hormone system, body condition, and body mass in two Arctic seabird species. Norwegian University of Science and Technology, Thesis.

  39. 39.

    Løseth ME (2014) Levels and effects of organohalogens on corticosterone hormones in glaucous gulls (Larus hyperboreus) from Kongsfjorden, Svalbard. Norwegian University of Science and Technology,Thesis.

  40. 40.

    Garcia RA, Chiaia-Hernandez AC, Lara-Martin PA, Loos M, Hollender J, Oetjen K, et al. Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry. Env Sci Technol. 2019;53(14):8068–77. https://doi.org/10.1021/acs.est.9b01895.

    CAS  Article  Google Scholar 

  41. 41.

    Lindström G, Kärrman A, van Bavel B. Accuracy and precision in the determination of perfluorinated chemicals in human blood verified by interlaboratory comparisons. J Chromatogr A. 2009;1216(3):394–400. https://doi.org/10.1016/j.chroma.2008.10.091.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Valsecchi S, Rusconi M, Polesello S. Determination of perfluorinated compounds in aquatic organisms: a review. Anal Bioanal Chem. 2013;405(1):143–57. https://doi.org/10.1007/s00216-012-6492-7.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hanssen L, Dudarev AA, Huber S, Odland J, Nieboer E, Sandanger TM. Partition of perfluoroalkyl substances (PFASs) in whole blood and plasma, assessed in maternal and umbilical cord samples from inhabitants of arctic Russia and Uzbekistan. Sci Total Environ. 2013;447:430–7. https://doi.org/10.1016/j.scitotenv.2013.01.029.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Okada E, Kashino I, Matsuura H, Sasaki S, Miyashita C, Yamamoto J, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int. 2013;60:89–96. https://doi.org/10.1016/j.envint.2013.07.013.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Nøst TH, Vestergren R, Berg V, Nieboer E, Odland J, Sandanger TM. Repeated measurements of per- and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort. Environ Int. 2014;67:43–53. https://doi.org/10.1016/j.envint.2014.02.011.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Routti H, Gabrielsen GW, Herzke D, Kovacs KM, Lydersen C. Spatial and temporal trends in perfluoroalkyl substances (PFASs) in ringed seals (Pusa hispida) from Svalbard. Environ Pollut. 2016;214:230–8. https://doi.org/10.1016/j.envpol.2016.04.016.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Yeung LW, Guruge KS, Taniyasu S, Yamashita N, Angus PW, Herath CB. Profiles of perfluoroalkyl substances in the liver and serum of patients with liver cancer and cirrhosis in Australia. Ecotoxicol Environ Saf. 2013;96:139–46. https://doi.org/10.1016/j.ecoenv.2013.06.006.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Gebbink WA, Glynn A, Berger U. Temporal changes (1997–2012) of perfluoroalkyl acids and selected precursors (including isomers) in Swedish human serum. Environ Pollut. 2015;199:166–73. https://doi.org/10.1016/j.envpol.2015.01.024.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Gao K, Fu J, Xue Q, Li Y, Liang Y, Pan Y, et al. An integrated method for simultaneously determining 10 classes of per- and polyfluoroalkyl substances in one drop of human serum. Anal Chim Acta. 2018;999:76–86. https://doi.org/10.1016/j.aca.2017.10.038.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Routti H, Krafft BA, Herzke D, Eisert R, Oftedal O. Perfluoroalkyl substances detected in the world’s southernmost marine mammal, the Weddell seal (Leptonychotes weddellii). Environ Pollut. 2015;197:62–7. https://doi.org/10.1016/j.envpol.2014.11.026.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL, et al. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015. Environ Res. 2017;157:87–95. https://doi.org/10.1016/j.envres.2017.05.013.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    T. L (2010) Application note 1: comparison of a measurement result with the certified value. European Reference Materials European Commission - Joint Research Centre Institute for Reference Materials and Measurements (IRMM)

Download references

Code availability

Not applicable.

Author information

Affiliations

Authors

Contributions

Alix Rodowa—primary author. Jessica Reiner—editing, contributions to validity and accuracy.

Corresponding author

Correspondence to Alix E. Rodowa.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

The authors provide consent for publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodowa, A.E., Reiner, J.L. Utilization of a NIST SRM: a case study for per- and polyfluoroalkyl substances in NIST SRM 1957 organic contaminants in non-fortified human serum. Anal Bioanal Chem 413, 2295–2301 (2021). https://doi.org/10.1007/s00216-021-03241-7

Download citation

Keywords

  • PFAS
  • SRM
  • NIST
  • SRM 1957
  • Reference material
  • Human serum