A WiFi scanner in conjunction with disposable multiplex paper assay for the quantitation of disease markers in blood plasma

Abstract

Herein we report a quantitative, multiplex assay for disease markers in plasma based on an integrated setup of a portable scanner and a disposable paper-based analytical device (PAD). The quantitative analysis relies on the digital colorimetric reading of the three-layer PAD with 30 assay sites for performing respective chromogenic reactions for plasma uric acid, glucose, and triglyceride, which are considered as important risk factors for cardiovascular diseases. A portable scanner with WiFi transmission capability was used to produce high-quality color images of the PADs and wirelessly transfer them to a smartphone or other mobile devices for data processing. The concentrations of biomarkers in both standard solutions and plasma samples can be directly obtained using a custom-designed smartphone app that is also capable of constructing calibration curves. The detection limits of uric acid, glucose, and triglyceride were determined to be 0.50 mg/dL, 0.84 mmol/L, and 14 mg/dL, respectively, which are below the normal limits and adequate for clinical validation. Owing to the distinct advantages—simple, portable, and cost-effective—this mobile assay protocol can be used for point-of-care (POC) settings or resource-limited situations, and potentially for the diagnosis and prevention of infectious diseases.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, et al. microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol. 2019;234(10):17064–99.

    CAS  Article  Google Scholar 

  2. 2.

    Perazella MA, Coca SG. Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nat Rev Nephrol. 2013;9(8):484–90.

    CAS  Article  Google Scholar 

  3. 3.

    Yun H, Sun Z, Wu J, Tang A, Hu M, Xiang Z. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020;507:94–7.

    CAS  Article  Google Scholar 

  4. 4.

    Medeiros de Morais C d L, de Lima KM. A colorimetric microwell method using a desktop scanner for biochemical assays. Talanta. 2014;126:145–50.

    CAS  Article  Google Scholar 

  5. 5.

    Capitan-Vallvey LF, Lopez-Ruiz N, Martinez-Olmos A, Erenas MM, Palma AJ. Recent developments in computer vision-based analytical chemistry: a tutorial review. Anal Chim Acta. 2015;899:23–56.

    CAS  Article  Google Scholar 

  6. 6.

    Liu MM, Lian X, Liu H, Guo ZZ, Huang HH, Lei Y, et al. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta. 2019;200:511–7.

    CAS  Article  Google Scholar 

  7. 7.

    Lee J, Lee YJ, Ahn YJ, Choi S, Lee G-J. A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. Sensor Actuator B - Chem. 2018;256:828–34.

    CAS  Article  Google Scholar 

  8. 8.

    Lin B, Yu Y, Cao Y, Guo M, Zhu D, Dai J, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;100:482–9.

    CAS  Article  Google Scholar 

  9. 9.

    Zhang L, Wang H, Zhang X, Li X, Yu H-Z. Indirect competitive immunoassay on a Blu-ray disc for digitized quantitation of food toxins. ACS Sens. 2020;5(4):1239–45.

    CAS  Article  Google Scholar 

  10. 10.

    Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018). Biosens Bioelectron. 2019;132:17–37.

    CAS  Article  Google Scholar 

  11. 11.

    Wang J, Zhang L, Li X, Zhang X, Yu H-Z. From kirigami to three-dimensional paper-based micro-analytical device: cut-and-paste fabrication and mobile app quantitation. RSC Adv. 2019;9(40):23267–75.

    CAS  Article  Google Scholar 

  12. 12.

    Wang X, Li F, Cai Z, Liu K, Li J, Zhang B, et al. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal Bioanal Chem. 2018;410(10):2647–55.

    CAS  Article  Google Scholar 

  13. 13.

    Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods. 2018;10(29):3567–81.

    Article  Google Scholar 

  14. 14.

    Jalal UM, Jin GJ, Shim JS. Paper-plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal Chem. 2017;89(24):13160–6.

    CAS  Article  Google Scholar 

  15. 15.

    Li X, Yang F, Wong JXH, Yu HZ. Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of aflatoxins. Anal Chem. 2017;89(17):8908–16.

    CAS  Article  Google Scholar 

  16. 16.

    Kong T, You JB, Zhang B, Nguyen B, Tarlan F, Jarvi K, et al. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays. Lab Chip. 2019;19(11):1991–9.

    CAS  Article  Google Scholar 

  17. 17.

    Christodouleas DC, Nemiroski A, Kumar AA, Whitesides GM. Broadly available imaging devices enable high-quality low-cost photometry. Anal Chem. 2015;87(18):9170–8.

    CAS  Article  Google Scholar 

  18. 18.

    Soldat DJ, Barak P, Lepore BJ. Microscale colorimetric analysis using a desktop scanner and automated digital image analysis. J Chem Ed. 2009;86(5):617–20.

    CAS  Article  Google Scholar 

  19. 19.

    Kim DB, Hong JM, Chang S-K. Colorimetric determination of Cu2+ ions with a desktop scanner using silica nanoparticles via formation of a quinonediimine dye. Sensor Actuator B - Chem. 2017;252:537–43.

    CAS  Article  Google Scholar 

  20. 20.

    Meng X, Schultz CW, Cui C, Li X, Yu H-Z. On-site chip-based colorimetric quantitation of organophosphorus pesticides using an office scanner. Sensor Actuators B - Chem. 2015;215:577–83.

    CAS  Article  Google Scholar 

  21. 21.

    Wen J, Shi X, He Y, Zhou J, Li Y. Novel plastic biochips for colorimetric detection of biomolecules. Anal Bioanal Chem. 2012;404(6–7):1935–44.

    CAS  Article  Google Scholar 

  22. 22.

    Choi MG, Lee YJ, Chang IJ, Ryu H, Yoon S, Chang S-K. Flatbed-scanner-based colorimetric Cu2+ signaling system derived from a coumarin–benzopyrylium conjugated dye. Sensor Actuator B - Chem. 2018;268:22–8.

    CAS  Article  Google Scholar 

  23. 23.

    Gorocs Z, Ozcan A. Biomedical imaging and sensing using flatbed scanners. Lab Chip. 2014;14(17):3248–57.

    CAS  Article  Google Scholar 

  24. 24.

    Zhou H, Wang H, Li X, Leung VCM. A survey on mobile data offloading technologies. IEEE Access. 2018;6:5101–11.

    Article  Google Scholar 

  25. 25.

    Silva HA, Carraro JC, Bressan J, Hermsdorff HH. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk. Einstein. 2015;13(2):202–8.

    Article  Google Scholar 

  26. 26.

    Krishnan E, Sokolove J. Uric acid in heart disease: a new C-reactive protein? Curr Opin Rheumatol. 2011;23(2):174–7.

    CAS  Article  Google Scholar 

  27. 27.

    De Backer G. European guidelines on cardiovascular disease prevention in clinical practice third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur Heart J. 2003;24(17):1601–10.

    Article  Google Scholar 

  28. 28.

    Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123(20):2292–333.

    Article  Google Scholar 

  29. 29.

    Chan M, Bloomberg HM, Frieden T, Yusuf S, Davis S, Lackland D, et al. Hearts: technical package for cardiovascular disease management in primary health care. Switzerland: World Health Organization; 2016.

    Google Scholar 

  30. 30.

    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):67–492.

    Article  Google Scholar 

  31. 31.

    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.

    Article  Google Scholar 

  32. 32.

    Zhang L, Kwok H, Li X, Yu H-Z. Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application. ACS Appl Mater Interfaces. 2017;9(45):39728–35.

    CAS  Article  Google Scholar 

  33. 33.

    Pileggi JV, Giorgio J, Wybenga KD. A one-tube serum uric acid method using phosphotungstic acid as protein precipitant and color reagent. Clin Chim Acta. 1972;37:141–9.

    CAS  Article  Google Scholar 

  34. 34.

    Solnica B, Naskalski JW, Sieradzki J. The evaluation of analytical performance of the precision G point-of-care glucometer. Clin Chem Lab Med. 2001;39(12):1283–6.

    CAS  Article  Google Scholar 

  35. 35.

    Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077–80.

    CAS  Article  Google Scholar 

  36. 36.

    Klotzsch SG, McNamara JR. Triglyceride measurements: a review of methods and interferences. Clin Chem. 1990;36(9):1605–13.

    CAS  Article  Google Scholar 

  37. 37.

    Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron. 2016;86:109–14.

    CAS  Article  Google Scholar 

  38. 38.

    Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108:814–25.

    CAS  Article  Google Scholar 

  39. 39.

    Hasanah U, Sani NDM, Heng LY, Idroes R, Safitri E. Construction of a hydrogel pectin-based triglyceride optical biosensor with immobilized lipase enzymes. Biosensors. 2019;9(4):135–45.

    CAS  Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Natural Science Foundation of China (Grant No. 21874098; 21575098); Shanxi Province International Cooperation Project (Grant No. 201903D421053); Shanxi Province University Scientific and Technological Achievements Transformation and Cultivation Project. This research was jointly supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaochun Li or Hua-Zhong Yu.

Ethics declarations

Ethical approval

All procedures performed in this work were in accordance with the protocols approved by the Biology and Medical Ethics Committee of Taiyuan University of Technology. The tested plasma samples were provided by the Shanxi Bethune Hospital with the consent from the patients and following the hospital’s regulation.

Conflict of interest

The authors have filed a China Patent (Application No. 201910668486.9) on July 23, 2019 to protect the IP disclosed in this publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Analytical Chemistry for Infectious Disease Detection and Prevention with guest editors Chaoyong Yang and XiuJun (James) Li.

Supplementary information

ESM 1

(PDF 877 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Deng, R., Guo, J. et al. A WiFi scanner in conjunction with disposable multiplex paper assay for the quantitation of disease markers in blood plasma. Anal Bioanal Chem (2021). https://doi.org/10.1007/s00216-021-03234-6

Download citation

Keywords

  • Bioassays
  • Point-of-care (POC) diagnosis
  • Paper-based analytical device (PAD)
  • Smartphone app
  • Colorimetry