Skip to main content

Advertisement

Log in

Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic methodologies allow for automatic and high-throughput replicative lifespan (RLS) determination of single budding yeast cells. However, the resulted RLS is highly impacted by the robustness of experimental conditions, especially the microfluidic yeast-trapping structures, which are designed for cell retention, growth, budding, and daughter cell dissection. In this work, four microfluidic yeast-trapping structures, which were commonly used to immobilize mother cells and remove daughter cells for entire lifespan of budding yeast, were systematically investigated by means of finite element modeling (FEM). The results from this analysis led us to propose an optimized design, the yeast rotation (YRot) trap, which is a “leaky bowl”–shaped structure composed of two mirrored microcolumns facing each other. The YRot trap enables stable retention of mother cells in its “bowl” and hydrodynamic rotation of buds into its “leaky orifice” such that matured progenies can be dissected in a coincident direction. We validated the functions of the YRot trap in terms of cell rotation and daughter dissection by both FEM simulations and experiments. With the integration of denser YRot traps in microchannels, the microfluidic platform with stable single-yeast immobilization, long-term cell culturing, and coincident daughter dissection could potentially improve the robustness of experimental conditions for precise RLS determination in yeast aging studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Botstein D, Fink GR. Yeast: an experimental organism for 21st century biology. Genetics. 2011;189(3):695–704.

    Article  CAS  Google Scholar 

  2. Feldmann H. Yeast: molecular and cell biology. 2nd edition. Weinheim: Wiley-Blackwell; 2012.

  3. Kaeberlein M, Burtner CR, Kennedy BK. Recent developments in yeast aging. PLoS Genet. 2007;3(5):e84.

    Article  Google Scholar 

  4. Steinkraus KA, Kaeberlein M, Kennedy BK. Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol. 2008;24:29–54.

    Article  CAS  Google Scholar 

  5. Sherman F. Getting started with yeast. Methods Enzymol. 2002;350:3–41.

    Article  CAS  Google Scholar 

  6. Minois N, Frajnt M, Wilson C, Vaupel JW. Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2005;102(2):402–6.

    Article  CAS  Google Scholar 

  7. Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics. 2012;191(2):347–87.

    Article  CAS  Google Scholar 

  8. Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959;183(4677):1751–2.

    Article  CAS  Google Scholar 

  9. Jo MC, Qin L. Microfluidic platforms for yeast-based aging studies. Small. 2016;12(42):5787–801.

    Article  CAS  Google Scholar 

  10. Chen KL, Crane MM, Kaeberlein M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev. 2017;161(Pt B):262–9.

    Article  CAS  Google Scholar 

  11. O'Laughlin R, Jin M, Li Y, Pillus L, Tsimring LS, Hasty J, et al. Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae. Translat Med Aging. 2020;4:151–60.

    Article  Google Scholar 

  12. Kaeberlein M, Kennedy BK. Large-scale identification in yeast of conserved aging genes. Mech Ageing Dev. 2005;126(1):17–21.

    Article  CAS  Google Scholar 

  13. McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, et al. A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. 2015;22(5):895–906.

    Article  CAS  Google Scholar 

  14. Cetin B, Ozer MB, Solmaz ME. Microfluidic bio-particle manipulation for biotechnology. Biochem Eng J. 2014;92:63–82.

    Article  CAS  Google Scholar 

  15. Novo P, Dell'Aica M, Janasek D, Zahedi RP. High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst. 2016;141(6):1888–905.

    Article  CAS  Google Scholar 

  16. Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, et al. Micro total analysis systems for cell biology and biochemical assays. Anal Chem. 2012;84(2):516–40.

    Article  CAS  Google Scholar 

  17. Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron. 2013;49:348–59.

    Article  CAS  Google Scholar 

  18. Mansor MA, Ahmad MR. Single cell electrical characterization techniques. Int J Mol Sci. 2015;16(6):12686–712.

    Article  CAS  Google Scholar 

  19. Sugaya S, Yamada M, Seki M. Observation of nonspherical particle behaviors for continuous shape-based separation using hydrodynamic filtration. Biomicrofluidics. 2011;5(2):24103.

    Article  Google Scholar 

  20. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, et al. Continuous inertial focusing and separation of particles by shape. Phys Rev X. 2012;2(3):31017.

    Google Scholar 

  21. Patel S, Showers D, Vedantam P, Tzeng TR, Qian S, Xuan X. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics. 2012;6(3):34102.

    Article  Google Scholar 

  22. Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, et al. Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device. Anal Chem. 2008;80(10):3722–7.

    Article  CAS  Google Scholar 

  23. Zhu Z, Frey O, Ottoz DS, Rudolf F, Hierlemann A. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells. Lab Chip. 2012;12(5):906–15.

    Article  CAS  Google Scholar 

  24. Mirzaei M, Pla-Roca M, Safavieh R, Nazarova E, Safavieh M, Li HY, et al. Microfluidic perfusion system for culturing and imaging yeast cell microarrays and rapidly exchanging media. Lab Chip. 2010;10(18):2449–57.

    Article  CAS  Google Scholar 

  25. Falconnet D, Niemisto A, Taylor RJ, Ricicova M, Galitski T, Shmulevich I, et al. High-throughput tracking of single yeast cells in a microfluidic imaging matrix. Lab Chip. 2011;11(3):466–73.

    Article  CAS  Google Scholar 

  26. Frey O, Rudolf F, Schmidt GW, Hierlemann A. Versatile, simple-to-use microfluidic cell-culturing chip for long-term, high-resolution, time-lapse imaging. Anal Chem. 2015;87(8):4144–51.

    Article  CAS  Google Scholar 

  27. Haandbaek N, Buergel SC, Heer F, Hierlemann A. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip. 2014;14(2):369–77.

    Article  CAS  Google Scholar 

  28. Shaker M, Colella L, Caselli F, Bisegna P, Renaud P. An impedance-based flow microcytometer for single cell morphology discrimination. Lab Chip. 2014;14(14):2548–55.

    Article  CAS  Google Scholar 

  29. Chawla K, Burgel SC, Schmidt GW, Kaltenbach H-M, Rudolf F, Frey O, et al. Integrating impedance-based growth-rate monitoring into a microfluidic cell culture platform for live-cell microscopy. Microsyst Nanoeng. 2018;4:8.

    Article  Google Scholar 

  30. Zhao Y, Lai HSS, Zhang G, Lee G-B, Li WJ. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip. Lab Chip. 2014;14(22):4426–34.

    Article  CAS  Google Scholar 

  31. Ryley J, Pereira-Smith OM. Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast. 2006;23(14–15):1065–73.

    Article  CAS  Google Scholar 

  32. Lee SS, Avalos Vizcarra I, Huberts DH, Lee LP, Heinemann M. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A. 2012;109(13):4916–20.

    Article  CAS  Google Scholar 

  33. Zhang Y, Luo C, Zou K, Xie Z, Brandman O, Ouyang Q, et al. Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One. 2012;7(11):e48275.

    Article  Google Scholar 

  34. Crane MM, Clark IB, Bakker E, Smith S, Swain PS. A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One. 2014;9(6):e100042.

    Article  Google Scholar 

  35. Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A. 2015;112(30):9364–9.

    Article  CAS  Google Scholar 

  36. Liu P, Young TZ, Acar M. Yeast replicator: a high-throughput multiplexed microfluidics platform for automated measurements of single-cell aging. Cell Rep. 2015;13(3):634–44.

    Article  CAS  Google Scholar 

  37. Fehrmann S, Paoletti C, Goulev Y, Ungureanu A, Aguilaniu H, Charvin G. Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Cell Rep. 2013;5(6):1589–99.

    Article  CAS  Google Scholar 

  38. Li Y, Jin M, O'Laughlin R, Bittihn P, Tsimring LS, Pillus L, et al. Multigenerational silencing dynamics control cell aging. Proc Natl Acad Sci U S A. 2017;114(42):11253–8.

    Article  CAS  Google Scholar 

  39. Sarnoski EA, Song R, Ertekin E, Koonce N, Acar M. Fundamental characteristics of single-cell aging in diploid yeast. iScience. 2018;7:96–109.

    Article  CAS  Google Scholar 

  40. Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, et al. Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle. 2011;10(1):144–55.

    Article  CAS  Google Scholar 

  41. Huberts DHEW, Gonzalez J, Lee SS, Litsios A, Hubmann G, Wit EC, et al. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2014;111(32):11727–31.

    Article  CAS  Google Scholar 

  42. Kirby B. Micro- and nanoscale fluid mechanics. 1st ed. Cambridge: Cambridge University Press; 2010.

  43. Morrison F. An introduction to fluid mechanics. 1st ed. Cambridge: Cambridge University Press; 2013.

Download references

Acknowledgements

We thank Dr. Fabian Rudolf in D-BSSE, ETH Zurich, Switzerland, for providing us the yeast cell strain as a gift.

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFF01012100), the National Natural Science Foundation of China (No. 61774036, 51972058, 11774051), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhu or Feng Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhu, Z., Wang, Y. et al. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Anal Bioanal Chem 413, 2181–2193 (2021). https://doi.org/10.1007/s00216-021-03186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03186-x

Keywords