Skip to main content

Advertisement

Log in

Rapid, user-friendly, and inexpensive detection of azidothymidine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Strict adherence to highly active antiretroviral therapy (HAART) is very important to improve the quality of life for HIV-positive patients to reduce new infections and determine treatment success. Azidothymidine (AZT) is an antiretroviral drug commonly used in HAART treatment. In this research, an “add, mix, and measure” assay was developed to detect AZT within minutes. Three different probes designed to release fluorophores when samples containing AZT are added were synthesized and characterized. The limit of detection to AZT in simulated urine samples was determined to be 4 μM in 5 min for one of the probes. This simple and rapid point-of-care test could potentially be used by clinicians and health care workers to monitor the presence of AZT in low resource settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4
Fig. 3

Similar content being viewed by others

Data availability

Synthesis of probes, data of fluorescence assays, determination of detection limits of AZT by probes, and characterization of all compounds and intermediates are provided in the ESM.

References

  1. Haynes BF, Burton DR, Mascola JR. Multiple roles for HIV broadly neutralizing antibodies. Sci Transl Med. 2019;11(516):eaaz2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bune GT, Yalew AW, Kumie A. The extents of metabolic syndrome among antiretroviral therapy exposed and ART naive adult HIV patients in the Gedeo-zone, Southern-Ethiopia: a comparative cross-sectional study. Arch Public Health. 2020;78:40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Archibald TL, Murrell DE, Brown SD. Chromatographic methods in HIV medicine: application to therapeutic drug monitoring. Biomed Chromatogr. 2018;32(2):e4170.

    Article  Google Scholar 

  4. Pratt GW, Minocha S, Orozco E, Gomez-Marquez JF, Klapperich CM. Monitoring HIV drug adherence with a paper-based assay. 2013 IEEE Point-of-Care Healthcare Technologies (PHT); 16–18 January; Bangalore, India2013. p. 69–71.

  5. Pratt GW, Fan A, Klapperich CM. Colorimetric detection of azidothymidine using an alkyne-modified dextran substrate. ACS Biomaterials Science & Engineering. 2015;1(5):314–9.

    Article  CAS  Google Scholar 

  6. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cohen J. Monthly shots may replace daily anti-HIV pills. Science. 2018;361(6404):740.

    Article  CAS  PubMed  Google Scholar 

  8. DeVore AD, Wosik J, Hernandez AF. The future of wearables in heart failure patients. JACC Heart Fail. 2019;7(11):922–32.

    Article  PubMed  Google Scholar 

  9. Nelson BW, Allen NB. Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period: Intraindividual validation study. JMIR Mhealth Uhealth. 2019;7(3):e10828.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dooley EE, Golaszewski NM, Bartholomew JB. Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth. 2017;5(3):e34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kordonouri O, Riddell MC. Use of apps for physical activity in type 1 diabetes: current status and requirements for future development. Ther Adv Endocrinol Metab. 2019;10:2042018819839298.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ip JE. Wearable devices for cardiac rhythm diagnosis and management. JAMA. 2019;321(4):337–8.

    Article  PubMed  Google Scholar 

  13. Duking P, Giessing L, Frenkel MO, Koehler K, Holmberg HC, Sperlich B. Wrist-worn wearables for monitoring heart rate and energy expenditure while sitting or performing light-to-vigorous physical activity: validation study. JMIR Mhealth Uhealth. 2020;8(5):e16716.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pratt GW, Fan A, Melakeberhan B, Klapperich CM. A competitive lateral flow assay for the detection of tenofovir. Anal Chim Acta. 2018;1017:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo L, Xu ZL, Yang JY, Xiao ZL, Li YJ, Beier RC, et al. Synthesis of novel haptens and development of an enzyme-linked immunosorbent assay for quantification of histamine in foods. J Agric Food Chem. 2014;62(51):12299–308.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yang J, Lu Y, Ma DY, Qi MG, Wang S. A competitive direct enzyme-linked immunosorbent assay for the rapid detection of deoxynivalenol: development and application in agricultural products and feedstuff. Food Agr Immunol. 2017;28(3):516–27.

    Article  CAS  Google Scholar 

  17. Liu FY, Chen ZJ, Shen YD, Sun YM, Yang JY, Wang H, et al. Hapten synthesis and production of specific antibody against 3-amino-5-morpholinomethyl-2-oxazolidone for immunoassay without derivatisation. Food Agr Immunol. 2018;29(1):332–45.

    Article  CAS  Google Scholar 

  18. Veal GJ, Back DJ. Metabolism of Zidovudine. Gen Pharmacol. 1995;26(7):1469–75.

    Article  CAS  PubMed  Google Scholar 

  19. Ghodke Y, Anderson PL, Sangkuhl K, Lamba J, Altman RB, Klein TE. PharmGKB summary: zidovudine pathway. Pharmacogenet Genomics. 2012;22(12):891–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Berkel SS, van Eldijk MB, van Hest JC. Staudinger ligation as a method for bioconjugation. Angew Chem Int Ed Engl. 2011;50(38):8806–27.

    Article  PubMed  Google Scholar 

  21. Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A. 2006;103(33):12371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou XJ, Sommadossi JP. Quantification of 3′-amino-3′-deoxythymidine, a toxic catabolite of 3′-azido-3′-deoxythymidine (zidovudine) in human plasma by high-performance liquid chromatography using precolumn derivatization with fluorescamine and fluorescence detection. J Chromatogr B Biomed Appl. 1994;656(2):389–96.

    Article  CAS  PubMed  Google Scholar 

  23. Fayz S, Inaba T. Zidovudine azido-reductase in human liver microsomes: activation by ethacrynic acid, dipyridamole, and indomethacin and inhibition by human immunodeficiency virus protease inhibitors. Antimicrob Agents Chemother. 1998;42(7):1654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohn M, Breinbauer R. The Staudinger ligation-a gift to chemical biology. Angew Chem Int Ed Engl. 2004;43(24):3106–16.

    Article  PubMed  Google Scholar 

  25. Schilling CI, Jung N, Biskup M, Schepers U, Brase S. Bioconjugation via azide-Staudinger ligation: an overview. Chem Soc Rev. 2011;40(9):4840–71.

    Article  CAS  PubMed  Google Scholar 

  26. Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287(5460):2007–10.

    Article  CAS  PubMed  Google Scholar 

  27. Le Droumaguet C, Wang C, Wang Q. Fluorogenic click reaction. Chem Soc Rev. 2010;39(4):1233–9.

    Article  PubMed  Google Scholar 

  28. Shieh P, Bertozzi CR. Design strategies for bioorthogonal smart probes. Org Biomol Chem. 2014;12(46):9307–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Z, Fahrni CJ. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inversion. J Am Chem Soc 2004;126(29):8862–8863.

  30. Vugts DJ, Vervoort A, Stigter-van Walsum M, Visser GW, Robillard MS, Versteegen RM, et al. Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach. Bioconjug Chem. 2011;22(10):2072–81.

    Article  CAS  PubMed  Google Scholar 

  31. Luo W, Gobbo P, Gunawardene PN, Workentin MS. Fluorogenic gold nanoparticle (AuNP) substrate: a model for the controlled release of molecules from AuNP Nanocarriers via interfacial Staudinger-Bertozzi ligation. Langmuir. 2017;33(8):1908–13.

    Article  CAS  PubMed  Google Scholar 

  32. Pavlickova V, Rimpelova S, Jurasek M, Zaruba K, Fahnrich J, Krizova I, et al. PEGylated Purpurin 18 with improved solubility: potent compounds for photodynamic therapy of cancer. Molecules. 2019;24(24):4477.

    Article  CAS  PubMed Central  Google Scholar 

  33. Kimani S, Ghosh G, Ghogare A, Rudshteyn B, Bartusik D, Hasan T, et al. Synthesis and characterization of mono-, di-, and tri-poly(ethylene glycol) chlorin e6 conjugates for the photokilling of human ovarian cancer cells. J Org Chem. 2012;77(23):10638–47.

    Article  CAS  PubMed  Google Scholar 

  34. Hamblin MR, Miller JL, Rizvi I, Ortel B, Maytin EV, Hasan T. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. 2001;61(19):7155–62.

    CAS  PubMed  Google Scholar 

  35. Rapozzi V, Zacchigna M, Biffi S, Garrovo C, Cateni F, Stebel M, et al. Conjugated PDT drug: photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther. 2010;10(5):471–82.

    Article  CAS  PubMed  Google Scholar 

  36. Klein OJ, Yuan H, Nowell NH, Kaittanis C, Josephson L, Evans CL. An integrin-targeted, highly diffusive construct for photodynamic therapy. Sci Rep. 2017;7(1):13375.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sibrian-Vazquez M, Nesterova IV, Jensen TJ, Vicente MG. Mitochondria targeting by guanidine- and biguanidine-porphyrin photosensitizers. Bioconjug Chem. 2008;19(3):705–13.

    Article  CAS  PubMed  Google Scholar 

  38. Hegedus R, Pauschert A, Orban E, Szabo I, Andreu D, Marquardt A, et al. Modification of daunorubicin-GnRH-III bioconjugates with oligoethylene glycol derivatives to improve solubility and bioavailability for targeted cancer chemotherapy. Biopolymers. 2015;104(3):167–77.

    Article  PubMed  Google Scholar 

  39. Gobbo P, Luo W, Cho SJ, Wang X, Biesinger MC, Hudson RH, et al. Small gold nanoparticles for interfacial Staudinger-Bertozzi ligation. Org Biomol Chem. 2015;13(15):4605–12.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y, Yao YW, Qi Q, Fang Y, Li JY, Yao C. A click-activated fluorescent probe for selective detection of hydrazoic acid and its application in biological imaging. Chem Commun (Camb). 2013;49(53):5924–6.

    Article  CAS  Google Scholar 

  41. Tiwari P, Kumar A, Prakash R. Electrochemical detection of azidothymidine on modified probes based on chitosan stabilised silver nanoparticles hybrid material. RSC Adv. 2015;5(109):90089–97.

    Article  CAS  Google Scholar 

  42. Lewis SR, White CA, Bartlett MG. Simultaneous determination of abacavir and zidovudine from rat tissues using HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;850(1–2):45–52.

    Article  CAS  PubMed  Google Scholar 

  43. Vietz C, Schutte ML, Wei Q, Richter L, Lalkens B, Ozcan A, et al. Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity. ACS Omega. 2019;4(1):637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma C, Battat R, Jairath V, Vande CN. Advances in therapeutic drug monitoring for small-molecule and biologic therapies in inflammatory bowel disease. Curr Treat Options Gastroenterol. 2019;17(1):127–45.

    Article  PubMed  Google Scholar 

  45. Janssen JM, Dorlo TPC, Steeghs N, Beijnen JH, Hanff LM, van Eijkelenburg NKA, et al. Pharmacokinetic targets for therapeutic drug monitoring of small molecule kinase inhibitors in pediatric oncology. Clin Pharmacol Ther. 2020;cpt.1808.

  46. Taddeo A, Prim D, Bojescu ED, Segura JM, Pfeifer ME. Point-of-care therapeutic drug monitoring for precision dosing of immunosuppressive drugs. J Appl Lab Med. 2020;5(4):738–61.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Institute of Allergy and Infectious Diseases (Grant number 5R61AI140475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suri S. Iyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 3.22 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Jia, T., Fang, J. et al. Rapid, user-friendly, and inexpensive detection of azidothymidine. Anal Bioanal Chem 413, 1999–2006 (2021). https://doi.org/10.1007/s00216-021-03168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03168-z

Keywords

Navigation