A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis


This is the first report demonstrating proof of concept for the passive, non-invasive extraction and in situ potentiometric detection of human sweat chloride ions (Cl ions) using a stable printed planar liquid-junction reference electrode-integrated hydrogel-based touch-sensor pad without activities such as exercise to induce perspiration, environmental temperature control, or requiring cholinergic drug administration. The sensor pad was composed entirely of a screen-printed bare Ag/AgCl-based chloride ion-selective electrode and a planar liquid-junction Ag/AgCl reference electrode, which were fully covered by an agarose hydrogel in phosphate-buffered saline (PBS). When human skin contacted the hydrogel pad, sweat Cl ions were continuously extracted into the gel, followed by in situ potentiometric detection. The planar liquid-junction Ag/AgCl reference electrode had a polymer-based KCl-saturated inner electrolyte layer to stabilize the potential of the Ag/AgCl electrode even with a substantial change in the chloride ion concentration in the hydrogel pad. We expect this fully screen-printed sensor to achieve the low-cost passive and non-invasive daily monitoring of human Cl ions in sweat in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Tamhane M, Cabrera-Ghyori S, Abelian G, Viswanath V. Review of biomarkers in ocular matrices: challenges and opportunities. Pharm Res. 2019;36:40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Moreddu R, Vigolo D, Yetisen AK. Contact lens technology: from fundamentals to applications. Adv Healthcare Mater. 2019;8:1900368.

    Article  CAS  Google Scholar 

  3. 3.

    Viswanath B, Choi CS, Lee K, Kim S. Recent trends in the development of diagnostic tools for diabetes mellitus using patient saliva. Trends Anal Chem. 2017;89:60–7.

    CAS  Article  Google Scholar 

  4. 4.

    Gug IT, Tertis M, Hosu O, Cristea C. Salivary biomarkers detection: analytical and immunological methods overview. Trends Anal Chem. 2019;113:301–16.

    CAS  Article  Google Scholar 

  5. 5.

    Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, de Winter P, et al. Novel urinary biomarkers for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;69:39–52.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Bidin MZ, Shah AM, Stanslas J, Seong CLT. Blood and urine biomarkers in chronic kidney disease: an update. Clin Chim Acta. 2019;495:239–50.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Baker LB. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature. 2019;6:211–59.

    Article  Google Scholar 

  8. 8.

    Mena-Bravo A, Luque de Castro MD. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139–47.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Chung M, Fortunato M, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface. 2019;16:20190217.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015;9:031301.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Rock J, Makholm L, Eickhoff J. A new method of sweat testing: the CF Quantum® sweat test. J Cyst Fibros. 2014;13:520–7.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Brasier N, Eckstein J. Sweat as a source of next-generation digital biomarkers. Digit Biomark. 2019;3:155–65.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Dam VAT, Zevenbergen MAG, van Schaijk R. Flexible chloride sensor for sweat analysis. Proc Eng. 2015;120:237–40.

    CAS  Article  Google Scholar 

  14. 14.

    Bates GP, Miller VS. Sweat rate and sodium loss during work in the heat. J Occup Med Toxicol. 2008;3:4.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    McKone EF, Velentgas P, Swenson AJ, Goss CH. Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype. J Cystic Fibrosis. 2015;14:580–6.

    CAS  Article  Google Scholar 

  16. 16.

    Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: towards integrative, multifunctional and body-compliant perspiration analysis. Sens Actuators A: Phys. 2019;296:200–21.

    CAS  Article  Google Scholar 

  17. 17.

    Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37:389–406.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Zhang Y, Guo H, Kim SB, Wu Y, Ostojich D, Park SH, et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip. 2019;19:1545–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Bandodkar AJ, Butruf P, Choi J, Lee K, Sekine Y, Reeder JT, et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv. 2019;5:eaav3294.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Choi J, Bandodkar AJ, Reeder JT, Ray TR, Turnquist A, Kim SB, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019;4:379–88.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HMD, Rosa B, et al. A wearable multi-sensing patch for continuous sweat monitoring. Biosens Bioelectron. 2017;93:139–45.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Shay T, Dickey MD, Velev OD. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces. Lab Chip. 2017;17:710–6.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip. 2018;18:2178–86.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hauke A, Simmers P, Ojha YR, Cameron BD, Ballweg R, Zhang T, et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip. 2018;18:3750–9.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Cazalé A, Sant W, Ginot F, Launay JC, Savourey G, Revol-Cavalier F, et al. Physiological stress monitoring using sodium-ion potentiometric microsensors for sweat analysis. Sens Actuators B: Chemical. 2016;225:1–9.

    Article  CAS  Google Scholar 

  27. 27.

    Emaminejad S, Gao W, Wu E, Davies ZA, Nyein HYY, Challa S, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Soc. 2017;114:4625–30.

    CAS  Article  Google Scholar 

  28. 28.

    Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci. 2018;5:1800880.

    Article  CAS  Google Scholar 

  29. 29.

    Nagamine K, Mano T, Nomura A, Ichimura Y, Izawa R, Furusawa H, et al. Noninvasive sweat-lactate biosensor employing a hydrogel-based touchPad. Sci Rep. 2019;9:10102.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Nagamine K, Nomura A, Ichimura Y, Izawa R, Sasaki S, Furusawa H, Matsui H, Tokito S. Printed organic transistor-based biosensors for non-invasive sweat analysis. Anal Sci. 2019, in press.

  31. 31.

    Lin S, Wang B, Zhao Y, Shih R, Cheng X, Yu W, et al. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micro-patches for user-identifiable and wireless chemo/biosensing. ACS Sens. 2020;5:93–102.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Fukuda K, Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv Mater. 2017;29:1602736.

    Article  CAS  Google Scholar 

  33. 33.

    Ihalainen P, Määttänen A, Sandler N. Printing technologies for biomolecule and cell-based applications. Int J Pharm. 2015;494:585–92.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst. 2010;135:845–67.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sophocleous M, Atkinson JK. A review of screen-printed silver/silver–chloride (Ag/AgCl) reference electrodes potentially suitable for potentiometric environmental sensors. Sens Actuators A. 2017;267:106–20.

    CAS  Article  Google Scholar 

  36. 36.

    Shitanda I, Komoda M, Hoshi Y, Itagaki M. Screen-printed paper-based three-electrode system with a long-term stable and an instantaneously usable reference electrode. Chem Lett. 2018;47:1502–4.

    CAS  Article  Google Scholar 

  37. 37.

    Komoda M, Shitanda I, Hoshi Y, Itagaki M. Fabrication and characterization of a fully screen-printed Ag/AgCl reference electrode using silica gel inks exhibiting instantaneous usability and long-term stability. Electrochemistry. 2019;87:65–9.

    CAS  Article  Google Scholar 

  38. 38.

    Komoda M, Shitanda I, Hoshi Y, Itagaki M. Instantaneously usable screen-printed silver/silver–sulfate reference electrode with long-term stability. Electrochem Commun. 2019;103:133–7.

    CAS  Article  Google Scholar 

  39. 39.

    Sengwa RJ, Dhatarwal P, Choudhary S. Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta. 2014;142:359–70.

    CAS  Article  Google Scholar 

  40. 40.

    Zhu W, Wang X, Yang B, Tang X. A novel ionic-conduction mechanism based on polyurethane electrolyte. J Polym Sci B Polym Phys. 2001;39:1246–54.

    CAS  Article  Google Scholar 

  41. 41.

    Gonzalo-Ruiz J, Mas R, de Haro C, Cabruja E, Camero R, Alonso-Lomillo MA, et al. Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens Bioelectron. 2009;24:1788–91.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Prompt CA, Quinto PM, Kleeman CR. High concentrations of sweat calcium, magnesium and phosphate in chronic renal failure. Nephron. 1978;20:4–9.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Cole DEC, Boucher MJ. Increased sweat sulfate concentrations in chronic renal failure. Nephron. 1986;44:92–5.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Weller R, Pattullo S, Smith L, Golden M, Ormerod A, Benjamin N. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol. 1996;107:327–31.

    CAS  PubMed  Article  Google Scholar 

Download references


This work was partly supported by the Center of Innovation Program (COI) from the Japan Science and Technology Agency, JST (JPMJCE1312 and R02W05), and by the Leading Initiative for Excellent Young Researchers (LEADER), a Grant-in-Aid for Scientific Research C (18K04910) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, the YU-COE (C), a research grant from Yamagata University, Japan, and the Foundation for Technology Promotion of Electronic Circuit Board.

Author information



Corresponding authors

Correspondence to Kuniaki Nagamine or Shizuo Tokito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the Ethics Committee approved the protocol of the Faculty of Medicine, Yamagata University (Approval No. 30–7).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(PDF 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ichimura, Y., Kuritsubo, T., Nagamine, K. et al. A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal Bioanal Chem (2021). https://doi.org/10.1007/s00216-021-03156-3

Download citation


  • Biosensor
  • Sweat analysis
  • Printed electronics
  • Hydrogel
  • Healthcare