A mussel tissue certified reference material for multiple phycotoxins. Part 5: profiling by liquid chromatography–high-resolution mass spectrometry

Abstract

A freeze-dried mussel tissue–certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography–high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Anonymous. Commission Regulation (EU) No 15/2011 of 10 January 2011 amending Regulation (EC) No 2074/2005 as regards recognised testing methods for detecting marine biotoxins in live bivalve molluscs. Off J Eur Union. 2011;L006 of 11 January 2011: 3–6.

  2. 2.

    Zendong Z, McCarron P, Herrenknecht C, Sibat M, Amzil Z, Cole RB, et al. High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers. J Chromatogr A. 2015;1416:10–21.

    CAS  PubMed  Google Scholar 

  3. 3.

    McCarron P, Wright E, Quilliam MA. Liquid chromatography–mass spectrometry of domoic acid and lipophilic shellfish toxins with selected reaction monitoring and optional confirmation by library searching of product ion spectra. J AOAC Int. 2014;97(2):316–24.

    CAS  PubMed  Google Scholar 

  4. 4.

    Turner AD, Goya AB. Occurrence and profiles of lipophilic toxins in shellfish harvested from Argentina. Toxicon. 2015;102:32–42.

    CAS  PubMed  Google Scholar 

  5. 5.

    Harju K, Koskela H, Kremp A, Suikkanen S, de la Iglesia P, Miles CO, et al. Identification of gymnodimine D and presence of gymnodimine variants in the dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Toxicon. 2016;112:68–76.

    CAS  PubMed  Google Scholar 

  6. 6.

    Kim JH, Tillmann U, Adams NG, Krock B, Stutts WL, Deeds JR, et al. Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. Harmful Algae. 2017;68:152–67.

    CAS  PubMed  Google Scholar 

  7. 7.

    Aasen JAB, Hardstaff W, Aune T, Quilliam MA. Discovery of fatty acid ester metabolites of spirolide toxins in mussels from Norway using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(10):1531–7.

    CAS  PubMed  Google Scholar 

  8. 8.

    McCarron P, Rourke WA, Hardstaff W, Pooley B, Quilliam MA. Identification of pinnatoxins and discovery of their fatty acid ester metabolites in mussels (Mytilus edulis) from Eastern Canada. J Agric Food Chem. 2012;60(6):1437–46.

    CAS  PubMed  Google Scholar 

  9. 9.

    Blay P, Hui JPM, Chang J, Melanson JE. Screening for multiple classes of marine biotoxins by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem. 2011;400(2):577–85.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gerssen A, Mulder PPJ, de Boer J. Screening of lipophilic marine toxins in shellfish and algae: development of a library using liquid chromatography coupled to orbitrap mass spectrometry. Anal Chim Acta. 2011;685(2):176–85.

    CAS  PubMed  Google Scholar 

  11. 11.

    Domenech A, Cortes-Francisco N, Palacios O, Franco JM, Riobo P, Llerena JJ, et al. Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry. J Chromatogr A. 2014;1328:16–25.

    CAS  PubMed  Google Scholar 

  12. 12.

    Hess P, McCarron P, Quilliam MA. Fit-for-purpose shellfish reference materials for internal and external quality control in the analysis of phycotoxins. Anal Bioanal Chem. 2007;387(7):2463–74.

    CAS  PubMed  Google Scholar 

  13. 13.

    Perez RA, Rehmann N, Crain S, LeBlanc P, Craft C, MacKinnon S, et al. The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish. Anal Bioanal Chem. 2010;398:2243–52.

    CAS  PubMed  Google Scholar 

  14. 14.

    Beach DG, Crain S, Lewis NI, LeBlanc P, Hardstaff WR, Perez RA, et al. Development of certified reference materials for diarrhetic shellfish poisoning toxins, part 1: calibration solutions. J AOAC Int. 2016;99(5):1151–62.

    CAS  PubMed  Google Scholar 

  15. 15.

    National Research Council Canada. Certified Reference Materials. https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials. Accessed 30 Sept 2020.

  16. 16.

    Hardstaff WR, Jamieson WD, Milley JE, Quilliam MA, Sim PG. Reference materials for domoic acid, a marine neurotoxin. Fresenius J Anal Chem. 1990;338:520–5.

    CAS  Google Scholar 

  17. 17.

    McCarron P, Giddings SD, Reeves KL, Hess P, Quilliam MA. A mussel (Mytilus edulis) tissue certified reference material for the marine biotoxins azaspiracids. Anal Bioanal Chem. 2015;407(11):2985–96.

    CAS  PubMed  Google Scholar 

  18. 18.

    McCarron P, Reeves KL, Giddings SD, Beach DG, Quilliam MA. Development of certified reference materials for diarrhetic shellfish poisoning toxins, part 2: shellfish matrix materials. J AOAC Int. 2016;99(5):1163–72.

    CAS  PubMed  Google Scholar 

  19. 19.

    Schantz MM, Benner BA Jr, Heckert NA, Sander LC, Sharpless KE, Vander Pol SS, et al. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds. Anal Bioanal Chem. 2015;407(11):2945–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sharpless KE, Lindstrom RM, Nelson BC, Phinney KW, Rimmer CA, Sander LC, et al. Preparation and characterization of standard reference material 1849 infant/adult nutritional formula. J AOAC Int. 2010;93(4):1262–74.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kucklick JR, Schantz MM, Pugh RS, Porter BJ, Poster DL, Becker PR, et al. Marine mammal blubber reference and control materials for use in the determination of halogenated organic compounds and fatty acids. Anal Bioanal Chem. 2010;397(2):423–32.

    CAS  PubMed  Google Scholar 

  22. 22.

    McCarron P, Emteborg H, Nulty C, Rundberget T, Loader JI, Teipel K, et al. A mussel tissue certified reference material for multiple phycotoxins. Part 1: design and preparation. Anal Bioanal Chem. 2011;400(3):821–33.

    CAS  PubMed  Google Scholar 

  23. 23.

    McCarron P, Giddings SD, Quilliam MA. A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography–mass spectrometry, sample extraction and quantitation procedures. Anal Bioanal Chem. 2011;400(3):835–46.

    CAS  PubMed  Google Scholar 

  24. 24.

    McCarron P, Emteborg H, Giddings SD, Wright E, Quilliam MA. A mussel tissue certified reference material for multiple phycotoxins. Part 3: homogeneity and stability. Anal Bioanal Chem. 2011;400(3):847–58.

    CAS  PubMed  Google Scholar 

  25. 25.

    McCarron P, Wright E, Emteborg H, Quilliam MA. A mussel tissue certified reference material for multiple phycotoxins. Part 4: certification. Anal Bioanal Chem. 2017;409(1):95–106.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wright E, Reeves KL, Giddings SD, Quilliam MA, McCarron P. NRC CRM-FDMT1: mussel tissue reference material for multiple phycotoxins. 2016. Biotoxin Metrology Technical Report CRM-FDMT1 20070717 https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/39/html. Accessed 30 Sept 2020.

  27. 27.

    Kilcoyne J, Twiner MJ, McCarron P, Crain S, Giddings SD, Foley B, et al. Structure elucidation, relative LC–MS response and in vitro toxicity of azaspiracids 7–10 isolated from mussels (Mytilus edulis). J Agric Food Chem. 2015;63(20):5083–91.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kilcoyne J, Nulty C, Jauffrais T, McCarron P, Herve F, Foley B, et al. Isolation, structure elucidation, relative LC–MS response, and in vitro toxicity of azaspiracids from the dinoflagellate Azadinium spinosum. J Nat Prod. 2014;77(11):2465–74.

    CAS  PubMed  Google Scholar 

  29. 29.

    Knudsen BK. Mass spectral characterisation of three new groups of algal toxins. Master of Science (MSc) in Chemistry. Hamilton: The University of Waikato; 2009.

    Google Scholar 

  30. 30.

    Dounay AB, Urbanek RA, Sabes SF, Forsyth CJ. Total synthesis of the marine natural product 7-deoxy-okadaic acid: a potent inhibitor of serine/threonine-specific protein phosphatases. Angew Chem Int Ed. 1999;38(15):2258–62.

    CAS  Google Scholar 

  31. 31.

    These A, Scholz J, Preiss-Weigert A. Sensitive method for the determination of lipophilic marine biotoxins in extracts of mussels and processed shellfish by high-performance liquid chromatography–tandem mass spectrometry based on enrichment by solid-phase extraction. J Chromatogr A. 2009;1216(21):4529–38.

    CAS  PubMed  Google Scholar 

  32. 32.

    Quilliam MA, Giddings SD, McNamara C, Bekri K. RM-RILC, a reference material for measurement of liquid chromatography retention indices. 2020. Biotoxin Metrology Technical Report RM RILC 20140827 https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/115/html. Accessed 30 Sept 2020.

  33. 33.

    Hess P, McCarron P, Krock B, Kilcoyne J, Miles CO. Azaspiracids: chemistry, biosynthesis, metabolism, and detection. In: Botana LM, editor. Seafood and freshwater toxins: pharmacology, physiology, and detection, 3rd edition. 3rd ed. Boca Raton: CRC Press; 2014. p. 799–823.

    Google Scholar 

  34. 34.

    Krock B, Tillmann U, Voss D, Koch BP, Salas R, Witt M, et al. New azaspiracids in Amphidomataceae (Dinophyceae). Toxicon. 2012;60(5):830–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kilcoyne J, McCarron P, Twiner MJ, Rise F, Hess P, Wilkins AL, et al. Identification of 21,22-dehydroazaspiracids in mussels (Mytilus edulis) and in vitro toxicity of azaspiracid-26. J Nat Prod. 2018;81(4):885–93.

    CAS  PubMed  Google Scholar 

  36. 36.

    McCarron P, Kilcoyne J, Miles CO, Hess P. Formation of azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J Agric Food Chem. 2009;57(1):160–9.

    CAS  PubMed  Google Scholar 

  37. 37.

    Kilcoyne J, McCarron P, Hess P, Miles CO. Effects of heating on proportions of azaspiracids 1–10 in mussels (Mytilus edulis) and identification of carboxylated precursors for azaspiracids 5, 10, 13, and 15. J Agric Food Chem. 2015;63(51):10980–7.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ji Y, Qiu J, Xie T, McCarron P, Li A. Accumulation and transformation of azaspiracids in scallops (Chlamys farreri) and mussels (Mytilus galloprovincialis) fed with Azadinium poporum, and response of antioxidant enzymes. Toxicon. 2017;143:20–8.

    PubMed  Google Scholar 

  39. 39.

    Kilcoyne J, McCarron P, Twiner MJ, Nulty C, Crain S, Quilliam MA, et al. Epimers of azaspiracids: isolation, structural elucidation, relative LC-MS response, and in vitro toxicity of 37-epi-azaspiracid-1. Chem Res Toxicol. 2014;27(4):587–600.

    CAS  PubMed  Google Scholar 

  40. 40.

    Mudge EM, Miles CO, Hardstaff WR, McCarron P. Fatty acid esters of azaspiracids identified in mussels (Mytilus edulis) using liquid chromatography-high resolution mass spectrometry. Toxicon: X. 2020;8:100059.

    Google Scholar 

  41. 41.

    Holmes MJ, Lee FC, Khoo HW, Teo SLM. Production of 7-deoxy-okadaic acid by a New Caledonian strain of prorocentrum lima (Dinophyceae). J Phycol. 2001;37(2):280–8.

    CAS  Google Scholar 

  42. 42.

    Torgersen T, Wilkins AL, Rundberget T, Miles CO. Characterization of fatty acid esters of okadaic acid and related toxins in blue mussels (Mytilus edulis) from Norway. Rapid Commun Mass Spectrom. 2008;22(8):1127–36.

    CAS  PubMed  Google Scholar 

  43. 43.

    Li A, Ma J, Cao J, McCarron P. Toxins in mussels (Mytilus galloprovincialis) associated with diarrhetic shellfish poisoning episodes in China. Toxicon. 2012;60:420–5.

    CAS  PubMed  Google Scholar 

  44. 44.

    Holland PT, McKenzie AL, McNabb P, Selwood AI, editors. Esterified forms of okadaic acid and dinophysistoxins in New Zealand shellfish. 6th International Conference on Molluscan Shellfish Safety; 2007; Nantes, France.

  45. 45.

    Torgersen T, Miles CO, Rundberget T, Wilkins AL. New esters of okadaic acid in seawater and blue mussels (Mytilus edulis). J Agric Food Chem. 2008;56(20):9628–35.

    CAS  PubMed  Google Scholar 

  46. 46.

    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Grauso L, Magno GS, et al. Desulfoyessotoxins from Adriatic mussels: a new problem for seafood safety control. Chem Res Toxicol. 1997;20:95–8.

    Google Scholar 

  47. 47.

    Daiguji M, Satake M, Ramstad H, Aune T, Naoki H, Yasumoto T. Structure and fluorometric HPLC determination of 1-desulfoyessotoxin, a new yessotoxin analog isolated from mussels from Norway. Nat Toxins. 1998;6:235–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Wilkins AL, Rehmann N, Torgersen T, Rundberget T, Keogh M, Petersen D, et al. Identification of fatty acid esters of pectenotoxin-2 seco acid in blue mussels (Mytilus edulis) from Ireland. J Agric Food Chem. 2006;54:5672–8.

    CAS  PubMed  Google Scholar 

  49. 49.

    Torgersen T, Sandvik M, Lundve B, Lindegarth S. Profiles and levels of fatty acid esters of okadaic acid group toxins and pectenotoxins during toxin depuration. Part II: blue mussels (Mytilus edulis) and flat oyster (Ostrea edulis). Toxicon. 2008;52(3):418–27.

    CAS  PubMed  Google Scholar 

  50. 50.

    Torgersen T, Lindegarth S, Ungfors A, Sandvik M. Profiles and levels of fatty acid esters of okadaic acid group toxins and pectenotoxins during toxin depuration. Part I: brown crab (Cancer pagurus). Toxicon. 2008;52(3):407–17.

    CAS  PubMed  Google Scholar 

  51. 51.

    Miles CO, Wilkins AL, Samdal IA, Sandvik M, Petersen D, Quilliam MA, et al. A novel pectenotoxin, PTX-12, in Dinophysis spp. and shellfish from Norway. Chem Res Toxicol. 2004;17(11):1423–33.

    CAS  PubMed  Google Scholar 

  52. 52.

    Suzuki T, Walter JA, LeBlanc P, MacKinnon S, Miles CO, Wilkins AL, et al. Identification of pectenotoxin-11 as 34S-hydroxypectenotoxin-2, a new pectenotoxin analogue in the toxic dinoflagellate Dinophysis acuta from New Zealand. Chem Res Toxicol. 2006;19(2):310–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Cembella A, Lewis N, Quilliam MA. The marine dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as the causative organism of spirolides shellfish toxins. Phycologia. 2000;39(1):67–74.

    Google Scholar 

  54. 54.

    Qiu J, Rafuse C, Lewis NI, Li A, Meng F, Beach DG, et al. Screening of cyclic imine and paralytic shellfish toxins in isolates of the genus Alexandrium (Dinophyceae) from Atlantic Canada. Harmful Algae. 2018;77:108–18.

    CAS  PubMed  Google Scholar 

  55. 55.

    Sleno L, Chalmers MJ, Volmer DA. Structural study of spirolide marine toxins by mass spectrometry. Part II. Mass spectrometric characterization of unknown spirolides and related compounds in a cultured phytoplankton extract. Anal Bioanal Chem. 2004;378(4):977–86.

    CAS  PubMed  Google Scholar 

  56. 56.

    Ciminiello P, Dell'aversano C, Iacovo ED, Fattorusso E, Forino M, Grauso L, et al. Characterization of 27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin profile. Toxicon. 2010;56(8):1327–33.

    CAS  PubMed  Google Scholar 

  57. 57.

    Garcia-Altares M, Casanova A, Bane V, Diogene J, Furey A, de la Iglesia P. Confirmation of pinnatoxins and spirolides in shellfish and passive samplers from Catalonia (Spain) by liquid chromatography coupled with triple quadrupole and high-resolution hybrid tandem mass spectrometry. Mar Drugs. 2014;12(6):3706–32.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Beach DG, Kerrin ES, Giddings SD, Quilliam MA, McCarron P. Differential mobility-mass spectrometry double spike isotope dilution study of release of β-methylaminoalanine and proteinogenic amino acids during biological sample hydrolysis. Sci Rep. 2018;8(1):117.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Michael A. Quilliam, Christopher O. Miles, Jeremy E. Melanson, Elizabeth M. Mudge, Joseph P.M. Hui, Daniel G. Beach, and William R. Hardstaff from the National Research Council of Canada are acknowledged for discussions on methods, assistance with identification of toxins, contributions to technical work, and for review of this manuscript. Håkan Emteborg of the European Commission’s Joint Research Centre (JRC) is thanked for his long-term contribution to, and support of, the CRM-FDMT1 project. Arjen Gerssen (Wageningen Food Safety Research, The Netherlands) is thanked for providing a list of known algal biotoxin variants. Alistair Wilkins (Norwegian Veterinary Institute, Oslo, Norway, and University of Waikato, Hamilton, New Zealand) and Craig J. Forsyth (The State University of Ohio, Columbus, OH, USA) are thanked for provision of standards. Many others have contributed to the planning, production, and certification of CRM-FDMT1 to this point and those efforts are gratefully acknowledged. Finally, we want to thank users of CRM-FDMT1 for the feedback we have received to date; this input is valued and welcomed on an ongoing basis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pearse McCarron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 590 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wright, E.J., McCarron, P. A mussel tissue certified reference material for multiple phycotoxins. Part 5: profiling by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem 413, 2055–2069 (2021). https://doi.org/10.1007/s00216-020-03133-2

Download citation

Keywords

  • CRM-FDMT1
  • LC-HRMS
  • Yessotoxin
  • Azaspiracid
  • Okadaic acid
  • Dinophysistoxin
  • Pectenotoxin
  • Spirolide