Skip to main content
Log in

“Turn-off” sensing probe based on fluorescent gold nanoclusters for the sensitive detection of hemin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Balanced level of hemin in the body is fundamentally important for normal human organ function. Therefore, environmentally benign, stable, and fluorescent metal nanoclusters (NCs) for selective and sensitive detection of hemin have been investigated and reported. Herein, highly orange red emissive gold NCs are successfully synthesized using glutathione as a reducing and stabilizing agent (GSH-Au NCs). The clusters are characterized using various techniques like Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-vis spectroscopy, and fluorescence spectrometer. The fluorescence intensity of as-synthesized Au NCs strongly quenched upon addition of different concentrations of hemin. The decrease in fluorescence intensity of GSH-Au NCs has been applied for determination of hemin concentration in the linear range from 1 to 25 nM with a low limit of detection (LOD) of 0.43 nM. The method was also successfully applied for quantification of hemin in human serum sample. In view of this reality, the system can be considered as a possible strategy and excellent platform for determination of hemin in various areas of application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee JM, Lee WH, Kay HY, E-s K, Moon A, Kim SG. Hemin, an iron-binding porphyrin, inhibits HIF-1α induction through its binding with heat shock protein 90. Int J Cancer. 2012;130:716–27. https://doi.org/10.1002/ijc.26075.

    Article  CAS  PubMed  Google Scholar 

  2. Ni P, Chen C, Jiang Y, Lu Y, Chen W. A simple and sensitive fluorescent assay for hemin detection based on artemisinin-thiamine. Sensor Actuat B: Chem. 2018;273:198–203. https://doi.org/10.1016/j.snb.2018.06.052.

    Article  CAS  Google Scholar 

  3. Gao W, Wang C, Muzyka K, Kitte SA, Li J, Zhang W, et al. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector. Anal Chem. 2017;89:6160–5. https://doi.org/10.1021/acs.analchem.7b01000.

    Article  CAS  PubMed  Google Scholar 

  4. Fereja TH, Kitte SA, Gao W, Yuan F, Snizhko D, Qi L, et al. Artesunate-luminol chemiluminescence system for the detection of hemin. Talanta. 2019;204:379–85. https://doi.org/10.1016/j.talanta.2019.06.007.

    Article  CAS  PubMed  Google Scholar 

  5. Jahromi Z, Shamspur T, Mostafavi A, Mohamadi M. Separation and preconcentration of hemin from serum samples followed by voltammetric determination. J Mol Liq. 2017;242:91–7. https://doi.org/10.1016/j.molliq.2017.07.008.

    Article  CAS  Google Scholar 

  6. Han J, Zhou Z, Bu X, Zhu S, Zhang H, Sun H, et al. Employing aqueous CdTe quantum dots with diversified surface functionalities to discriminate between heme (Fe(ii)) and hemin (Fe(iii)). Analyst. 2013;138:3402–8. https://doi.org/10.1039/C3AN00310H.

    Article  CAS  PubMed  Google Scholar 

  7. Ikariyama Y, Suzuki S, Aizawa M. Luminescence immunoassay of human serum albumin with hemin as labeling catalyst. Anal Chem. 1982;54:1126–9. https://doi.org/10.1021/ac00244a026.

    Article  CAS  PubMed  Google Scholar 

  8. Han S, Liu E, Li H. Flow injection chemiluminescence determination of hemin using the rhodamine B–H2O2–NaOH system. Microchim Acta. 2005;149:281–6. https://doi.org/10.1007/s00604-004-0312-5.

    Article  CAS  Google Scholar 

  9. Sawicki KT, Chang H-C, Ardehali H. Role of heme in cardiovascular physiology and disease. J Am Heart Assoc. 2015;4:e001138–e. https://doi.org/10.1161/JAHA.114.001138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang BH, Li N, Liu SG, Li NB, Luo HQ. A label-free, highly sensitive and selective detection of hemin based on the competition between hemin and protoporphyrin IX binding to G-quadruplexes. Anal Sci. 2016;32:887–92. https://doi.org/10.2116/analsci.32.887.

    Article  CAS  PubMed  Google Scholar 

  11. Rong X-J, Tang M-Q, He J-H, Cai X-C, Kang Y-T, Mao Y. RP-HPLC determination of related substances of hemin. Chin J Pharl Anal. 2013;33:274–7.

    CAS  Google Scholar 

  12. Lombardo ME, Araujo LS, Ciccarelli AB, Batlle A. A spectrophotometric method for estimating hemin in biological systems. Anal Biochem. 2005;341:199–203. https://doi.org/10.1016/j.ab.2004.11.002.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi S, Bhowmik S, Sugimoto N. Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure. J Inorg Biochem. 2017;166:199–207. https://doi.org/10.1016/j.jinorgbio.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  14. Benavides J, Quijada-Garrido I, García O. The synthesis of switch-off fluorescent water-stable copper nanocluster Hg2+ sensors via a simple one-pot approach by an in situ metal reduction strategy in the presence of a thiolated polymer ligand template. Nanoscale. 2020;12(2):944–55. https://doi.org/10.1039/C9NR08439H.

    Article  CAS  PubMed  Google Scholar 

  15. Feng X, Zhang J, Wang J, Han A, Fang G, Liu J, et al. The stabilization of fluorescent copper nanoclusters by dialdehyde cellulose and their use in mercury ion sensing. Anal Methods. 2020;12(24):3130–6. https://doi.org/10.1039/D0AY00657B.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y, Zhou H, Zhang S, Xu J. The synthesis of metal nanoclusters and their applications in bio-sensing and imaging. Methods and Applications in Fluorescence. 2019;8(1):012001. https://doi.org/10.1088/2050-6120/ab57e7.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Dong X, Zheng Y, Wang Y, Guo Z, Jiang H, et al. A novel turn-on fluorescent sensor for the sensitive detection of glutathione via gold nanocluster preparation based on controllable ligand-induced etching. Analyst. 2020;145(12):4265–75. https://doi.org/10.1039/D0AN00807A.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang G, Li Y, Xu J, Zhang C, Shuang S, Dong C, et al. Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+. Sensor Actuat B: Chem. 2013;183:583–8. https://doi.org/10.1016/j.snb.2013.04.023.

    Article  CAS  Google Scholar 

  19. Li Y, Wen Q-L, Liu A-Y, Long Y, Liu P, Ling J, et al. One-pot synthesis of green-emitting gold nanoclusters as a fluorescent probe for determination of 4-nitrophenol. Microchim Acta. 2020;187:106. https://doi.org/10.1007/s00604-019-4090-5.

    Article  CAS  Google Scholar 

  20. Jia Y, Sun T, Jiang Y, Sun W, Zhao Y, Xin J, et al. Green, fast, and large-scale synthesis of highly fluorescent au nanoclusters for Cu2+ detection and temperature sensing. Analyst. 2018;143(21):5145–50. https://doi.org/10.1039/C8AN01617H.

    Article  CAS  PubMed  Google Scholar 

  21. Liu R, Duan S, Bao L, Wu Z, Zhou J, Yu R. Photonic crystal enhanced gold-silver nanoclusters fluorescent sensor for Hg2+ ion. Anal Chim Acta. 2020;1114:50–7. https://doi.org/10.1016/j.aca.2020.04.011.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang G, Xiang M, Kong R-M, Qu F. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle–gold nanocluster nanocomposites and oxidized 3,3′,5,5′-tetramethylbenzidine. Analyst. 2020;145(19):6254–61. https://doi.org/10.1039/D0AN01392G.

    Article  CAS  PubMed  Google Scholar 

  23. Halawa MI, Lai J, Xu G. Gold nanoclusters: synthetic strategies and recent advances in fluorescent sensing. Mater Today Nano. 2018;3:9–27. https://doi.org/10.1016/j.mtnano.2018.11.001.

    Article  Google Scholar 

  24. Wang J, Lin X, Su L, Yin J, Shu T, Zhang X. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. Nanoscale. 2019;11(1):294–300. https://doi.org/10.1039/C8NR08526A.

    Article  CAS  Google Scholar 

  25. Bian R-X, Wu X-T, Chai F, Li L, Zhang L-Y, Wang T-T, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+. Sensor Actuat B: Chem. 2017;241:592–600. https://doi.org/10.1016/j.snb.2016.10.120.

    Article  CAS  Google Scholar 

  26. Deng H-H, Deng Q, Li K-L, Zhuang Q-Q, Zhuang Y-B, Peng H-P, et al. Fluorescent gold nanocluster-based sensor for detection of alkaline phosphatase in human osteosarcoma cells. Spectrochim Acta A. 2020;229:117875. https://doi.org/10.1016/j.saa.2019.117875.

    Article  CAS  Google Scholar 

  27. Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano. 2016;10:2591–9. https://doi.org/10.1021/acsnano.5b07596.

    Article  CAS  PubMed  Google Scholar 

  28. Chang H-C, Ho J-aA. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem. 2015;87:10362–7. https://doi.org/10.1021/acs.analchem.5b02452.

    Article  CAS  PubMed  Google Scholar 

  29. Alkilany A, Alsotari S, Alkawareek M, Abulateefeh S. Facile hydrophobication of glutathione-protected gold nanoclusters and encapsulation into poly(lactide-co-glycolide) nanocarriers. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-47543-4.

  30. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K. Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep. 2017;7:40298. https://doi.org/10.1038/srep40298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thakur NS, Mandal N, Banerjee UC. Esterase-mediated highly fluorescent gold nanoclusters and their use in ultrasensitive detection of mercury: synthetic and mechanistic aspects. ACS Omega. 2018;3(12):18553–62. https://doi.org/10.1021/acsomega.8b02505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y-S, Kamat PV. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J Am Chem Soc. 2014;136(16):6075–82. https://doi.org/10.1021/ja5017365.

    Article  CAS  PubMed  Google Scholar 

  33. Lu F, Yang H, Tang Y, Yu C-J, Wang G, Yuan Z, et al. 11-Mercaptoundecanoic acid capped gold nanoclusters with unusual aggregation-enhanced emission for selective fluorometric hydrogen sulfide determination. Microchim Acta. 2020;187(4):200. https://doi.org/10.1007/s00604-020-4159-1.

    Article  CAS  Google Scholar 

  34. Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, et al. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal Chim Acta. 2013;770:140–6. https://doi.org/10.1016/j.aca.2013.01.042.

    Article  CAS  PubMed  Google Scholar 

  35. Feng B, Xing Y, Lan J, Su Z, Wang F. Synthesis of MUC1 aptamer-stabilized gold nanoclusters for cell-specific imaging. Talanta. 2020;212:120796. https://doi.org/10.1016/j.talanta.2020.120796.

    Article  CAS  PubMed  Google Scholar 

  36. Qian H, Zhu M, Wu Z, Jin R. Quantum sized gold nanoclusters with atomic precision. Acc Chem Res. 2012;45(9):1470–9. https://doi.org/10.1021/ar200331z.

    Article  CAS  PubMed  Google Scholar 

  37. Sang F, Zhang X, Shen F. Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Microchim Acta. 2019;186(6):373. https://doi.org/10.1007/s00604-019-3428-3.

    Article  CAS  Google Scholar 

  38. Talavera C, Kamat PV. Glutathione-capped gold nanoclusters: photoinduced energy transfer and singlet oxygen generation. J Chem Sci. 2018;130:143. https://doi.org/10.1007/s12039-018-1549-6.

    Article  CAS  Google Scholar 

  39. Gao L, Xiao Y, Wang Y, Chen X, Zhou B, Yang X. A carboxylated graphene and aptamer nanocomposite-based aptasensor for sensitive and specific detection of hemin. Talanta. 2015;132:215–21. https://doi.org/10.1016/j.talanta.2014.09.010.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Z, Jin R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010;10(7):2568–73. https://doi.org/10.1021/nl101225f.

    Article  CAS  PubMed  Google Scholar 

  41. Su X, Jiang H, Wang X. Thiols-induced rapid photoluminescent enhancement of glutathione-capped gold nanoparticles for intracellular thiols imaging applications. Anal Chem. 2015;87(20):10230–6. https://doi.org/10.1021/acs.analchem.5b02559.

    Article  CAS  PubMed  Google Scholar 

  42. Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. Spectrochim Acta A. 2020;242:118715. https://doi.org/10.1016/j.saa.2020.118715.

    Article  CAS  Google Scholar 

  43. Meng L, Wu Y, Xu N. Gold nanoclusters fluorescence probe for monitoring chloramphenicol and study of two-dimensional correlation fluorescence spectroscopy. J Mol Struc. 2021;1223:128875. https://doi.org/10.1016/j.molstruc.2020.128875.

    Article  CAS  Google Scholar 

  44. Liu G, Feng D-Q, Hua D, Liu T, Qi G, Wang W. Fluorescence enhancement of terminal amine assembled on gold nanoclusters and its application to ratiometric lysine detection. Langmuir. 2017;33(51):14643–8. https://doi.org/10.1021/acs.langmuir.7b02614.

    Article  CAS  PubMed  Google Scholar 

  45. Soleilhac A, Bertorelle F, Comby-Zerbino C, Chirot F, Calin N, Dugourd P, et al. Size characterization of glutathione-protected gold nanoclusters in the solid, liquid and gas phases. J Phys Chem C. 2017;121:27733–40. https://doi.org/10.1021/acs.jpcc.7b09500.

    Article  CAS  Google Scholar 

  46. Xu X, Ji J, Chen P, Wu J, Jin Y, Zhang L, et al. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal Chim Acta. 2020;1125:41–9. https://doi.org/10.1016/j.aca.2020.05.027.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Chen T, Zhang Z, Ni Y. Cytidine-stabilized copper nanoclusters as a fluorescent probe for sensing of copper ions and hemin. RSC Adv. 2018;8(17):9057–62. https://doi.org/10.1039/C7RA11383H.

    Article  CAS  Google Scholar 

  48. Jiang H, Zhang W, Li J, Nie L, Wu K, Duan H, et al. Inner-filter effect based fluorescence-quenching immunochromotographic assay for sensitive detection of aflatoxin B1 in soybean sauce. Food Control. 2018;94:71–6. https://doi.org/10.1016/j.foodcont.2018.06.030.

    Article  CAS  Google Scholar 

  49. Goldstein L, Teng Z-P, Zeserson E, Patel M, Regan RF. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res. 2003;73(1):113–21. https://doi.org/10.1002/jnr.10633.

    Article  CAS  PubMed  Google Scholar 

  50. Gao S, Wang R, Bi Y, Qu H, Chen Y, Zheng L. Identification of frozen/thawed beef based on label-free detection of hemin (Iron Porphyrin) with solution-gated graphene transistor sensors. Sensor Actuat B: Chem. 2020;305:127167. https://doi.org/10.1016/j.snb.2019.127167.

    Article  CAS  Google Scholar 

  51. Guo Z, Li B, Zhang Y, Zhao Q, Zhao J, Li L, et al. Acid-treated graphitic carbon nitride nanosheets as fluorescence probe for detection of hemin. ChemistrySelect. 2019;4(28):8178–82. https://doi.org/10.1002/slct.201901841.

    Article  CAS  Google Scholar 

  52. Shi Y, Huang WT, Luo HQ, Li NB. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem Commun. 2011;47(16):4676–8. https://doi.org/10.1039/C0CC05518B.

    Article  CAS  Google Scholar 

  53. Zhang Z, Hu B, Zhuang Q, Wang Y, Luo X, Xie Y, et al. Green synthesis of fluorescent nitrogen–sulfur co-doped carbon dots from scallion leaves for hemin sensing. Anal Lett. 2020;53(11):1704–18. https://doi.org/10.1080/00032719.2020.1716782.

    Article  CAS  Google Scholar 

  54. Baruah U, Gogoi N, Majumdar G, Chowdhury D. Capped fluorescent carbon dots for detection of hemin: role of number of -OH groups of capping agent in fluorescence quenching. Sci World J. 2013;2013:529159. https://doi.org/10.1155/2013/529159.

    Article  CAS  Google Scholar 

  55. Shekari Z, Zare HR, Falahati A. An ultrasensitive aptasensor for hemin and hemoglobin based on signal amplification via electrocatalytic oxygen reduction. Anal Biochem. 2017;518:102–9. https://doi.org/10.1016/j.ab.2016.11.016.

    Article  CAS  PubMed  Google Scholar 

  56. Neugebauer U, März A, Henkel T, Schmitt M, Popp J. Spectroscopic detection and quantification of heme and heme degradation products. Anal Bioanal Chem. 2012;404:2819–29. https://doi.org/10.1007/s00216-012-6288-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Nos. 21575134, 21633008, 21773224), National Key Research and Development Plan (2016YFA0203200), K. C. Wong Education Foundation, Natural Science Foundation of Guangxi Province (2019GXNSFGA245003), and Chinese Government Scholarship under China Scholarships council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereja, S.L., Fang, Z., Li, P. et al. “Turn-off” sensing probe based on fluorescent gold nanoclusters for the sensitive detection of hemin. Anal Bioanal Chem 413, 1639–1649 (2021). https://doi.org/10.1007/s00216-020-03126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03126-1

Keywords

Navigation