Skip to main content
Log in

Variability in hair gadolinium concentrations among decedents who received gadolinium-based contrast agents

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study utilized laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify gadolinium in the hair of autopsy cases that had received gadolinium-based contrast agents (GBCAs) before death. Consecutive autopsy cases were reviewed for GBCA injections and subjects who received a single type of GBCA in the year before death were included. Hair samples were analyzed using LA-ICP-MS as a line scan technique and parameters were optimized to maximize instrument sensitivity, accuracy, and precision. Linear regression analyses between hair measures and gadolinium dose were executed. LA-ICP-MS analysis produced a time-resolved record of GCBA exposure, with the position of the gadolinium peak maxima along the hair shaft providing a good estimate for the day that GBCA injection occurred (R2 = 0.46; p = 0.0022); however, substantial within and between subject variation in the position of the GBCA peak was observed. Average area under the curve for gadolinium peaks in the hair samples was a better predictor of gadolinium dose (R2 = 0.41; p = 0.0046), compared to the average of peak maxima concentration. Correlation between area under the curve and dose suggests that LA-ICP-MS analysis of hair may be an effective method to evaluate gadolinium levels in subjects in vivo after exposure to GBCAs. This study demonstrates that analysis of human hair using techniques with high spatial resolution such as LA-ICP-MS has excellent potential to reveal time-dependent signatures of past exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AAS:

Atomic absorbance spectroscopy

cps:

Counts per second

CV:

Coefficient of variation

eGFR:

Estimated glomerular filtration rate

EMA:

European Medicines Agency

ESI:

Elemental Scientific, Inc.

FDA:

US Food and Drug Administration

GBCA:

Gadolinium-based contrast agent

ICP-MS:

Inductively coupled plasma mass spectrometry

LA-ICP-MS:

Laser ablation inductively coupled plasma mass spectrometry

mm:

Millimeter

Nd:YAG:

Neodymium: yttrium aluminum garnet

NIST:

National Institute of Standards and Technology

NWR:

New Wave Research

SD:

Standard deviation

SRM:

Standard reference material

References

  1. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365–76. https://doi.org/10.1007/s10534-016-9931-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. EMA. Gadolinium-containing contrast agents. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. European Medicines Agency. 2017. https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-co. Accessed May 1, 2019.

  3. FDA. FDA drug safety communication: FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs; review to continue. U.S. Food and Drug Administration. 2017. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-identifies-no-harmful-effects-date-brain-retention-gadolinium. Accessed May 1, 2019.

  4. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41. https://doi.org/10.1148/radiol.13131669.

    Article  PubMed  Google Scholar 

  5. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276(1):228–32. https://doi.org/10.1148/radiol.2015142690.

    Article  PubMed  Google Scholar 

  6. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82. https://doi.org/10.1148/radiol.15150025.

    Article  PubMed  Google Scholar 

  7. McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, et al. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018;289(2):517–34. https://doi.org/10.1148/radiol.2018181151.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol. 2019;20(1):134–47. https://doi.org/10.3348/kjr.2018.0356.

    Article  PubMed  Google Scholar 

  9. Cowling T, Frey N. Macrocyclic and linear gadolinium based contrast agents for adults undergoing magnetic resonance imaging: a review of safety. CADTH rapid response report: summary with critical appraisal. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2019.

    Google Scholar 

  10. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, et al. Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging. 2016;34(10):1383–90. https://doi.org/10.1016/j.mri.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  11. Semelka RC, Commander CW, Jay M, Burke LM, Ramalho M. Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases. Investig Radiol. 2016;51(10):661–5. https://doi.org/10.1097/RLI.0000000000000318.

    Article  CAS  Google Scholar 

  12. Ramalho J, Ramalho M, Jay M, Burke LM, Semelka RC. Gadolinium toxicity and treatment. Magn Reson Imaging. 2016;34(10):1394–8. https://doi.org/10.1016/j.mri.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  13. Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium retention and toxicity-an update. Adv Chronic Kidney Dis. 2017;24(3):138–46. https://doi.org/10.1053/j.ackd.2017.03.004.

    Article  PubMed  Google Scholar 

  14. Bower DV, Richter JK, von Tengg-Kobligk H, Heverhagen JT, Runge VM. Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic stability of the agent. Investig Radiol. 2019;54(8):453–63. https://doi.org/10.1097/RLI.0000000000000567.

    Article  CAS  Google Scholar 

  15. Ginat DT, Meyers SP. Intracranial lesions with high signal intensity on T1-weighted MR images: differential diagnosis. RadioGraphics. 2012;32(2):499–516. https://doi.org/10.1148/rg.322105761.

    Article  PubMed  Google Scholar 

  16. Kintz P, Villain M. Hair in forensic toxicology with a special focus on drug-facilitated crimes. In: Tobin DJ, editor. Hair in toxicology, an important bio-monitor. Cambridge: RSC Publishing; 2005.

    Google Scholar 

  17. ERG. Summary report - hair analysis panel discussion: exploring the state of the science (June 12-13, 2001). Prepared for the Agency for Toxic Substances and Disease Registry, Division of Health Assessment and Consultation and Division of Health Education and Promotion, Atlanta, GA. Lexington, MA: Eastern Research Group2001 December 2001.

  18. ATSDR. Analysis of hair samples: how do hair sampling results relate to environmental exposure? Agency for the Toxic Substances and Disease Registry; 2003.

  19. Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G, et al. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci Int. 2005;153(1):39–44. https://doi.org/10.1016/j.forsciint.2005.04.020.

    Article  CAS  PubMed  Google Scholar 

  20. Mikulewicz M, Chojnacka K, Gedrange T, Górecki H. Reference values of elements in human hair: a systematic review. Environ Toxicol Pharmacol. 2013;36(3):1077–86. https://doi.org/10.1016/j.etap.2013.09.012.

    Article  CAS  PubMed  Google Scholar 

  21. Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR. Hair as a biomarker of environmental manganese exposure. Environ Sci Technol. 2013;47(3):1629–37. https://doi.org/10.1021/es3035297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reiss B. Hair as a biomarker for manganese exposure among welders: University of Washington. 2016.

  23. Ferré-Huguet N, Nadal M, Schuhmacher M, Domingo JL. Monitoring metals in blood and hair of the population living near a hazardous waste incinerator: temporal trend. Biol Trace Elem Res. 2009;128(3):191–9. https://doi.org/10.1007/s12011-008-8274-9.

    Article  CAS  PubMed  Google Scholar 

  24. Zota AR, Riederer AM, Ettinger AS, Schaider LA, Shine JP, Amarasiriwardena CJ, et al. Associations between metals in residential environmental media and exposure biomarkers over time in infants living near a mining-impacted site. J Expo Sci Environ Epidemiol. 2016;26(5):510–9. https://doi.org/10.1038/jes.2015.76.

    Article  CAS  PubMed  Google Scholar 

  25. Bader M, Dietz MC, Ihrig A, Triebig G. Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int Arch Occup Environ Health. 1999;72(8):521–7.

    Article  CAS  Google Scholar 

  26. Pozebon D, Scheffler GL, Dressler VL. Elemental hair analysis: a review of procedures and applications. Anal Chim Acta. 2017;992:1–23. https://doi.org/10.1016/j.aca.2017.09.017.

    Article  CAS  PubMed  Google Scholar 

  27. Robbins CR. Chemical composition of different hair types. Chemical and physical behavior of human hair. Fifth ed. New York: Springer; 2012.

    Book  Google Scholar 

  28. Tobin DJ. Hair in toxicology: an important bio-marker. Cambridge: The Royal Society of Chemistry; 2012.

    Google Scholar 

  29. Kempson IM, Skinner WM, Kirkbride KP. The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: a review. J Toxicol Environ Health B. 2007;10(8):611–22. https://doi.org/10.1080/10937400701389917.

    Article  CAS  Google Scholar 

  30. Robbins CR. Chemical and physical behavior of human hair. Fifth ed. New York: Springer; 2012.

    Book  Google Scholar 

  31. Stadlbauer C, Prohaska T, Reiter C, Knaus A, Stingeder G. Time-resolved monitoring of heavy-metal intoxication in single hair by laser ablation ICP-DRCMS. Anal Bioanal Chem. 2005;383(3):500–8. https://doi.org/10.1007/s00216-005-3283-4.

    Article  CAS  PubMed  Google Scholar 

  32. Sela H, Karpas Z, Zoriy M, Pickhardt C, Becker JS. Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Int J Mass Spectrom. 2007;261(2–3):199–207. https://doi.org/10.1016/j.ijms.2006.09.018.

    Article  CAS  Google Scholar 

  33. Pozebon D, Dressler VL, Matusch A, Becker JS. Monitoring of platinum in a single hair by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after cisplatin treatment for cancer. Int J Mass Spectrom. 2008;272(1):57–62. https://doi.org/10.1016/j.ijms.2008.01.001.

    Article  CAS  Google Scholar 

  34. Noel M, Christensen JR, Spence J, Robbins CT. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet. Sci Total Environ. 2015;529:1–9. https://doi.org/10.1016/j.scitotenv.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  35. Lum T-S, Tsoi Y-K, Yue PY-K, Leung KS-Y. Therapeutic drug monitoring using LA-ICP-MS: initial studies with metallodrugs in mouse whiskers. Microchem J. 2016;127:94–101. https://doi.org/10.1016/j.microc.2016.02.013.

    Article  CAS  Google Scholar 

  36. Robbins CR. Chemical and physical behavior of human hair. Fourth ed. New York: Springer; 2002.

    Google Scholar 

  37. NKF. Estimated glomerular filtration rate (eGFR). National Kidney Foundation. 2019. https://www.kidney.org/atoz/content/gfr. Accessed October 22, 2019.

  38. NIH. NCI drug dictionary, gadoxetate disodium. National Institute of Health, National Cancer Institute. 2020. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/gadoxetate-disodium. Accessed April 14, 2020.

  39. Hasegawa M, Duncan BR, Marshall DA, Gonzalez-Cuyar LF, Paulsen M, Kobayashi M, et al. Human hair as a possible surrogate marker of retained tissue gadolinium: a pilot autopsy study correlating gadolinium concentrations in hair with brain and other tissues among decedents who received gadolinium-based contrast agents. Investig Radiol. 2020;55(10):636–42.

    Article  CAS  Google Scholar 

  40. Rodushkin I, Axelsson MD. Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part III. Direct analysis by laser ablation. Sci Total Environ. 2003;305(1–3):23–39. https://doi.org/10.1016/s0048-9697(02)00463-1.

    Article  CAS  PubMed  Google Scholar 

  41. Dressler VL, Pozebon D, Mesko MF, Matusch A, Kumtabtim U, Wu B, et al. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry. Talanta. 2010;82(5):1770–7. https://doi.org/10.1016/j.talanta.2010.07.065.

    Article  CAS  PubMed  Google Scholar 

  42. Bartkus L, Amarasiriwardena D, Arriaza B, Bellis D, Yañez J. Exploring lead exposure in ancient Chilean mummies using a single strand of hair by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchem J. 2011;98(2):267–74. https://doi.org/10.1016/j.microc.2011.02.008.

    Article  CAS  Google Scholar 

  43. Luo R, Su X, Xu W, Zhang S, Zhuo X, Ma D. Determination of arsenic and lead in single hair strands by laser ablation inductively coupled plasma mass spectrometry. Sci Rep. 2017;7(1):3426. https://doi.org/10.1038/s41598-017-03660-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumtabtim U, Matusch A, Dani SU, Siripinyanond A, Becker JS. Biomonitoring for arsenic, toxic and essential metals in single hair strands by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom. 2011;307(1–3):185–91. https://doi.org/10.1016/j.ijms.2011.03.007.

    Article  CAS  Google Scholar 

  45. Sinclair DJ, Kinsley LPJ, McCulloch MT. High resolution analysis of trace elements in corals y laser ablation ICP-MS. Geochim Cosmochim Acta. 1998;62(11):1889–901.

    Article  CAS  Google Scholar 

  46. Sanborn M, Telmer K. The spatial resolution of LA-ICP-MS line scans across heterogeneous materials such as fish otoliths and zoned minerals. J Anal At Spectrom. 2003;18(10):1231–7. https://doi.org/10.1039/b302513f.

    Article  CAS  Google Scholar 

  47. Stanford. Simpson’s rule and integration. Stanford University. No Date. https://web.stanford.edu/sisl/MO-unit4-pdfs/4.2simpsonintegrals.pdf. Accessed November 5, 2019.

  48. Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015;407(22):6593–617. https://doi.org/10.1007/s00216-015-8858-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Durrant SF, Ward NI. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chem. 1994;49(3):317–23. https://doi.org/10.1016/0308-8146(94)90178-3.

    Article  CAS  Google Scholar 

  50. Legrand M, Lam R, Jensen-Fontaine M, Salin ED, Man CH. Direct detection of mercury in single human hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal At Spectrom. 2004;19(10):1287–8. https://doi.org/10.1039/b406733a.

    Article  CAS  Google Scholar 

  51. Legrand M, Lam R, Passos CJS, Mergler D, Salin ED, Chan HM. Analysis of mercury in sequential micrometer segments of single hair strands of fish-eaters. Environ Sci Technol. 2007;41:593–8.

    Article  CAS  Google Scholar 

  52. Cheajesadagul P, Wananukul W, Siripinyanond A, Shiowatana J. Metal doped keratin film standard for LA-ICP-MS determination of lead in hair samples. J Anal At Spectrom. 2011;26(3):493–8. https://doi.org/10.1039/c0ja00082e.

    Article  CAS  Google Scholar 

  53. Saint Olive Baque C, Zhou J, Gu W, Collaudin C, Kravtchenko S, Kempf JY, et al. Relationships between hair growth rate and morphological parameters of human straight hair: a same law above ethnical origins? Int J Cosmet Sci. 2012;34(2):111–6. https://doi.org/10.1111/j.1468-2494.2011.00687.x.

    Article  PubMed  Google Scholar 

  54. Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119:391–3. https://doi.org/10.1242/jcs02793.

    Article  CAS  PubMed  Google Scholar 

  55. Buffoli B, Rinaldi F, Labanca M, Sorbellini E, Trink A, Guanziroli E, et al. The human hair: from anatomy to physiology. Intl J Dermatol. 2014;53(3):331–41. https://doi.org/10.1111/ijd.12362.

    Article  Google Scholar 

  56. Robertson J. Forensic examination of human hair. London: Taylor & Francis; 1999.

    Book  Google Scholar 

  57. Lebeau MA, Montgomery MA, Brewer JD. The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci Int. 2011;210(1):110–6. https://doi.org/10.1016/j.forsciint.2011.02.015.

    Article  PubMed  Google Scholar 

  58. Wilkins DG, Mizuno A, Borges CR, Slawson MH, Rollins DE. Ofloxacin as a reference marker in hair of various colors. J Anal Toxicol. 2003;27(3):149–55. https://doi.org/10.1093/jat/27.3.149.

    Article  CAS  PubMed  Google Scholar 

  59. Lee WJ, Cha HW, Lim HJ, Lee S-J, Kim DW. The effect of sebocytes cultured from nevus sebaceus on hair growth. Exper Dermatol. 2012;21(10):796–8. https://doi.org/10.1111/j.1600-0625.2012.01572.x.

    Article  CAS  Google Scholar 

  60. Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Euro Rev Med Pharma Sci. 2002;6(2–3):33–44.

    CAS  Google Scholar 

  61. Scheff JD, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. Assessment of pharmacologic area under the curve when baselines are variable. Pharm Res. 2011;28(5):1081–9. https://doi.org/10.1007/s11095-010-0363-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol. 2016;51(7):447–53. https://doi.org/10.1097/RLI.0000000000000252.

    Article  CAS  Google Scholar 

  63. McDonald RJ, McDonald JS, Dai D, Schroeder D, Jentoft ME, Murray DL, et al. Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology. 2017;285(2):536–45. https://doi.org/10.1148/radiol.2017161594.

    Article  PubMed  Google Scholar 

Download references

Code availability

Data was analyzed using R for the current study and custom codes are available from the corresponding author on reasonable request.

Funding

This work was supported by the National Institute of Environmental Health Sciences (grant number P30ES007033) and in part by a grant from Guerbet, LLC. The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institute of Environmental Health Sciences or Guerbet, LLC.

Author information

Authors and Affiliations

Authors

Contributions

B. Duncan obtained relevant information, analyzed samples and data, and drafted the manuscript. M. Hasegawa obtained relevant information, provided samples, and contributed to the manuscript. D. Marshall and L. Gonzalez-Cuyar collected samples. M. Paulsen analyzed samples. M. Kobayashi provided samples. K. Maravilla and C. Simpson contributed to the study design and to drafting and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Brianne R. Duncan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was approved by the University of Washington Human Subjects Review Board for retrospective review of medical records and was Health Insurance Portability and Accountability Act compliant. Autopsy consent from each subject granted authorization for use of tissues for research purposes.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncan, B.R., Hasegawa, M., Marshall, D.A. et al. Variability in hair gadolinium concentrations among decedents who received gadolinium-based contrast agents. Anal Bioanal Chem 413, 1571–1582 (2021). https://doi.org/10.1007/s00216-020-03116-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03116-3

Keywords

Navigation