Thermal stability of cannabinoids in dried cannabis: a kinetic study


This study was undertaken to quantitatively explore the effect of temperature on the degradation of cannabinoids in dried cannabis flower. A total of 14 cannabinoids were monitored using liquid chromatography and tandem mass spectrometry in temperature environments from − 20 to + 40 C lasting up to 1 year. We find that a network of first-order degradation reactions is well-suited to model the observed changes for all cannabinoids. While most studies focus on high-temperature effects on the cannabinoids, this study provides high-precision quantitative assessment of room temperature kinetics with applications to shelf-life predictions and age estimates of cannabis products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Canada: Cannabis Act. In: Statutes of Canada. Government of Canada. 2018;

  2. 2.

    Fairbairn J, Liebmann J, Rowan M. The stability of cannabis and its preparations on storage. J Pharm Pharmacol. 1976;28(1):1–7.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Harvey D. Stability of cannabinoids in dried samples of cannabis dating from around 1896–1905. J Ethnopharmacol. 1990;28(1):117–28.

    CAS  Article  Google Scholar 

  4. 4.

    Peschel W. Quality control of traditional cannabis tinctures: pattern, markers, and stability. Sci Pharm. 2016;84(3):567–84.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ross SA, Elsohly MA. Unknown Month 1997. CBN and Δ9-THC concentration ratio as an indicator of the age of stored marijuana samples, Vol. 49–50.

  6. 6.

    Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J Pharm Biomed Anal. 2018;149:532–40.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Dussy FE, Hamberg C, Luginbühl M, Schwerzmann T, Briellmann TA. Isolation of Δ9-THCA-a from hemp and analytical aspects concerning the determination of Δ9-THC in cannabis products. Forensic Sci Int. 2005;149(1):3–10.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    McRae G, Melanson JE. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2020;412(27):7381–93.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    ISO: Reference materials — guidance for characterization and assessment of homogeneity and stability. In: Guide 35:2017. International Organization for Standardization. 2017;

  10. 10.

    Atkins PL. Sample processing and preparation considerations for solid cannabis products. J AOAC Int. 2019;102(2):427–33.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wang M, Wang YH, Avula B, Radwan MM, Wanas AS, van Antwerp J, Parcher JF, ElSohly MA, Khan IA. Decarboxylation study of acidic cannabinoids: A novel approach using ultra-high-performance supercritical fluid chromatography/photodiode array-mass spectrometry. Cannabis Cannabinoid Res. 2016;1(1):262–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86(8):1646–7.

    CAS  Article  Google Scholar 

  13. 13.

    Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A. Evolution of the cannabinoid and terpene content during the growth of cannabis sativa plants from different chemotypes. J Nat Prod. 2016;79(2):324–31.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hazekamp A, Fischedick JT, Díez ML, Lubbe A, Ruhaak RL. Chemistry of cannabis. Comprehensive natural products II. Elsevier; 2010. p. 1033–84,

  15. 15.

    Klauenberg K, Elster C. Markov chain monte carlo methods: an introductory example. Metrologia. 2016;53(1):S32–9.

    Article  Google Scholar 

  16. 16.

    Possolo A, Meija J. Measurement uncertainty: a reintroduction. Sistema Interamericano de Metrologia. Uruguay: Montevideo; 2020.

    Google Scholar 

  17. 17.

    Clancy D, Hodnett N, Orr R, Owen M, Peterson J. Kinetic model development for accelerated stability studies. AAPS PharmSciTech. 2016;18(4):1158–76.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Saa PA, Nielsen LK. Construction of feasible and accurate kinetic models of metabolism: a Bayesian approach. Sci Rep. 2016;6(1).

  19. 19.

    Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. Stan: a probabilistic programming language. J Stat Softw. 2017;76(1).

  20. 20.

    Stan Development Team: RStan: the R interface to Stan. 2020;. R package version 2.19.3.

  21. 21.

    Ranke J. mkin: Kinetic Evaluation of Chemical Degradation Data. 2020;. R package version

  22. 22.

    Lerner P. The precise determination of tetrahydrocannabinol in marihuana and hashish. Bull Narc. 1969;1(1):39–42.

    Google Scholar 

  23. 23.

    Zamengo L, Bettin C, Badocco D, Marco VD, Miolo G, Frison G. The role of time and storage conditions on the composition of hashish and marijuana samples: a four-year study. Forensic Sci Int. 2019;298:131–7.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Pacifico D, Miselli F, Carboni A, Moschella A, Mandolino G. Time course of cannabinoid accumulation and chemotype development during the growth of cannabis sativa l. Euphytica. 2007;160 (2):231–40.

    CAS  Article  Google Scholar 

  25. 25.

    Veress T, Szanto J, Leisztner L. Determination of cannabinoid acids by high-performance liquid chromatography of their neutral derivatives formed by thermal decarboxylation. J Chromatogr A. 1990; 520:339–47.

    CAS  Article  Google Scholar 

  26. 26.

    Perrotin-Brunel H, Buijs W, van Spronsen J, van Roosmalen MJ, Peters CJ, Verpoorte R, Witkamp GJ. Decarboxylation of Δ9-tetrahydrocannabinol: kinetics and molecular modeling. J Mol Struct. 2011; 987 (1–3): 67–73.

    CAS  Article  Google Scholar 

  27. 27.

    Erickson BE. Hemp growing pains. Chem Eng News. 2020;98(8):28.

    Google Scholar 

  28. 28.

    New practice for stability testing of cannabis and cannabis-based products. ASTM WK69125.

  29. 29.

    Sarma ND, Waye A, ElSohly MA, Brown PN, Elzinga S, Johnson HE, Marles RJ, Melanson JE, Russo E, Deyton L, Hudalla C, Vrdoljak GA, Wurzer JH, Khan IA, Kim NC, Giancaspro GI. Cannabis inflorescence for medical purposes: USP considerations for quality attributes. J Nat Prod. 2020;83(4):1334–51.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Juris Meija.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection celebrating ABCs 20th Anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.32 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meija, J., McRae, G., Miles, C.O. et al. Thermal stability of cannabinoids in dried cannabis: a kinetic study. Anal Bioanal Chem (2021).

Download citation


  • Cannabis
  • Stability of cannabinoids
  • Bayesian kinetic modeling