Skip to main content

Advertisement

Log in

Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Romano JA, Lukey BJ, Salem H. Chemical warfare agents: chemistry, pharmacology, toxicology, and therapeutics. 2nd ed. Boca Raton: CRC; 2008.

    Google Scholar 

  2. Wattana M, Bey T. Mustard gas or sulfur mustard: an old chemical agent as a new terrorist threat. Prehospital Disaster Med. 2009;24:19–29. https://doi.org/10.1017/S1049023X0000649X.

    Article  PubMed  Google Scholar 

  3. Ahmad S, Ahmad A. Emerging targets for treating sulfur mustard-induced injuries: coagulation and inflammation by sulfur mustard. Ann N Y Acad Sci. 2016;1374:123–31. https://doi.org/10.1111/nyas.13095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Panahi Y, Ghanei M, Zarch MV, Poursaleh Z, Parvin S, Rezaee R, et al. Evaluation of the pharmacoeconomics of drugs used for the treatment of long-term complications of sulfur mustard. Ital J Med. 2016:10. https://doi.org/10.4081/itjm.2016.743.

  5. Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol. 2011;41:384–403. https://doi.org/10.3109/10408444.2010.541224.

    Article  CAS  PubMed  Google Scholar 

  6. Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury—Munich experiences. Toxicology. 2009;263:3–8. https://doi.org/10.1016/j.tox.2009.04.060.

    Article  CAS  PubMed  Google Scholar 

  7. Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Chest. 1985;88:376–84. https://doi.org/10.1378/chest.88.3.376.

    Article  CAS  PubMed  Google Scholar 

  8. Wada S, Miyanishi M, Nishimoto Y, Kambe S, Miller RW. Mustard gas as a cause of respiratory neoplasia in man. Lancet. 1968;1:1161–3. https://doi.org/10.1016/s0140-6736(68)91863-1.

    Article  CAS  PubMed  Google Scholar 

  9. Yamakido M, Ishioka S, Hiyama K, Maeda A. Former poison gas workers and cancer: incidence and inhibition of tumor formation by treatment with biological response modifier N-CWS. Environ Health Perspect. 1996;104:485–8. https://doi.org/10.1289/ehp.96104s3485.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varmazyar M, Kianmehr Z, Faghihzadeh S, Ghazanfari T, Ardestani SK. Time course study of oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced toxicity. Int Immunopharmacol. 2019;73:81–93. https://doi.org/10.1016/j.intimp.2019.04.055.

    Article  CAS  PubMed  Google Scholar 

  11. Black RM. An overview of biological markers of exposure to chemical warfare agents. J Anal Toxicol. 2008;32:2–9. https://doi.org/10.1093/jat/32.1.2.

    Article  CAS  PubMed  Google Scholar 

  12. Thavaselvam D, Flora SS. Chemical and biological warfare agents. In: Biomarkers in Toxicology: Elsevier; 2014. p. 521–38.

  13. Manandhar E, Pay A, Veress LA, Logue BA. Rapid analysis of sulfur mustard oxide in plasma using gas chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur mustard exposure. J Chromatogr A. 2018;1572:106–11. https://doi.org/10.1016/j.chroma.2018.08.035.

    Article  CAS  PubMed  Google Scholar 

  14. Qi M, Xu B, Wu J, Zhang Y, Zong C, Chen J, et al. Simultaneous determination of sulfur mustard and related oxidation products by isotope-dilution LC–MS/MS method coupled with a chemical conversion. J Chromatogr B. 2016;1028:42–50. https://doi.org/10.1016/j.jchromb.2016.06.003.

    Article  CAS  Google Scholar 

  15. Koryagina NL, Savel’eva EI, Khlebnikova NS, Radilov AS. Determination of thiodiglycol and its oxide in biomedical samples by gas chromatography–mass spectrometry. J Anal Chem. 2018;73:1209–16. https://doi.org/10.1134/S1061934818130075.

    Article  CAS  Google Scholar 

  16. Li C, Chen J, Liu Q, Xie J, Li H. Simultaneous quantification of seven plasma metabolites of sulfur mustard by ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2013;917–918:100–7. https://doi.org/10.1016/j.jchromb.2012.12.035.

    Article  CAS  Google Scholar 

  17. Xu H, Nie Z, Zhang Y, Li C, Yue L, Yang W, et al. Four sulfur mustard exposure cases: overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring. Toxicol Rep. 2014;1:533–43. https://doi.org/10.1016/j.toxrep.2014.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. John H, Koller M, Worek F, Thiermann H, Siegert M. Forensic evidence of sulfur mustard exposure in real cases of human poisoning by detection of diverse albumin-derived protein adducts. Arch Toxicol. 2019;93:1881–91. https://doi.org/10.1007/s00204-019-02461-2.

    Article  CAS  PubMed  Google Scholar 

  19. Liu C, Liang L, Xiang Y, Yu H, Zhou S, Xi H, et al. An improved method for retrospective quantification of sulfur mustard exposure by detection of its albumin adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407:7037–46. https://doi.org/10.1007/s00216-015-8842-8.

    Article  CAS  PubMed  Google Scholar 

  20. Chen B, Yu H-L, Liu S-L, Liu C-C, Liang L-H, Li X-H, et al. A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2019;411:3405–15. https://doi.org/10.1007/s00216-019-01820-3.

    Article  CAS  PubMed  Google Scholar 

  21. Noort D, Fidder A, Degenhardt-Langelaan C, Hulst AG. Retrospective detection of sulfur mustard exposure by mass spectrometric analysis of adducts to albumin and hemoglobin: an in vivo study. J Anal Toxicol. 2008;32:25–30.

    Article  CAS  Google Scholar 

  22. Fidder A, Moes GWH, Scheffer AG, van der Schans GP, Baan RA, de Jong LPA, et al. Synthesis, characterization, and quantitation of the major adducts formed between sulfur mustard and DNA of calf thymus and human blood. Chem Res Toxicol. 1994;7:199–204. https://doi.org/10.1021/tx00038a013.

    Article  CAS  PubMed  Google Scholar 

  23. Ludlum DB, Austin-Ritchie P, Hagopian M, Niu T-Q, Yu D. Detection of sulfur mustard-induced DNA modifications. Chem Biol Interact. 1994;91:39–49.

    Article  CAS  Google Scholar 

  24. Batal M, Rebelo-Moreira S, Hamon N, Bayle P-A, Mouret S, Cléry-Barraud C, et al. A guanine-ethylthioethyl-glutathione adduct as a major DNA lesion in the skin and in organs of mice exposed to sulfur mustard. Toxicol Lett. 2015;233:1–7. https://doi.org/10.1016/j.toxlet.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  25. Zubel T, Bürkle A, Mangerich A. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: are DNA adducts suitable biomarkers of exposure? Toxicol Lett. 2018;293:21–30. https://doi.org/10.1016/j.toxlet.2017.12.014.

    Article  CAS  PubMed  Google Scholar 

  26. van der Schans GP, Mars-Groenendijk R, de Jong LPA, Benschop HP, Noort D. Standard operating procedure for immunuslotblot assay for analysis of DNA/sulfur mustard adducts in human blood and skin. J Anal Toxicol. 2004;28:316–9. https://doi.org/10.1093/jat/28.5.316.

    Article  PubMed  Google Scholar 

  27. Batal M, Boudry I, Mouret S, Wartelle J, Emorine S, Bertoni M, et al. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin. Toxicol Appl Pharmacol. 2013;273:644–50. https://doi.org/10.1016/j.taap.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  28. Yue L, Zhang Y, Chen J, Zhao Z, Liu Q, Wu R, et al. Distribution of DNA adducts and corresponding tissue damage of Sprague–Dawley rats with percutaneous exposure to sulfur mustard. Chem Res Toxicol. 2015;28:532–40. https://doi.org/10.1021/tx5004886.

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Zhang Y, Chen J, Guo L, Xu B, Wang L, et al. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol. 2015;28:1224–33. https://doi.org/10.1021/acs.chemrestox.5b00055.

    Article  CAS  PubMed  Google Scholar 

  30. Batal M, Boudry I, Mouret S, Cléry-Barraud C, Wartelle J, Bérard I, et al. DNA damage in internal organs after cutaneous exposure to sulphur mustard. Toxicol Appl Pharmacol. 2014;278:39–44. https://doi.org/10.1016/j.taap.2014.04.003.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Yue L, Nie Z, Chen J, Guo L, Wu B, et al. Simultaneous determination of four sulfur mustard–DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2014;961:29–35. https://doi.org/10.1016/j.jchromb.2014.04.050.

    Article  CAS  Google Scholar 

  32. Tewari-Singh N, Agarwal C, Huang J, Day BJ, White CW, Agarwal R. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo. J Pharmacol Exp Ther. 2011;336:450–9. https://doi.org/10.1124/jpet.110.173708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inturi S, Tewari-Singh N, Gu M, Shrotriya S, Gomez J, Agarwal C, et al. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts. Free Radic Biol Med. 2011;51:2272–80. https://doi.org/10.1016/j.freeradbiomed.2011.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–92. https://doi.org/10.1093/jn/134.3.489.

    Article  CAS  PubMed  Google Scholar 

  35. Gonçalves-Dias C, Morello J, Correia MJ, Coelho NR, Antunes AMM, Macedo MP, et al. Mercapturate pathway in the tubulocentric perspective of diabetic kidney disease. Nephron. 2019;143:17–23. https://doi.org/10.1159/000494390.

    Article  PubMed  Google Scholar 

  36. Cooper AJL, Krasnikov BF, Niatsetskaya ZV, Pinto JT, Callery PS, Villar MT, et al. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids. 2011;41:7–27. https://doi.org/10.1007/s00726-010-0552-0.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JY, Lee YH. Solid-phase extraction of sulfur mustard metabolites using an activated carbon fiber sorbent. J Anal Toxicol. 2015:bkv112. https://doi.org/10.1093/jat/bkv112.

  38. Sezigen S, Kenar L. Recent sulfur mustard attacks in Middle East and experience of health professionals. Toxicol Lett. 2020;320:52–7. https://doi.org/10.1016/j.toxlet.2019.12.001.

    Article  CAS  PubMed  Google Scholar 

  39. Hanna PE, Anders MW. The mercapturic acid pathway. Crit Rev Toxicol. 2019;49:819–929. https://doi.org/10.1080/10408444.2019.1692191.

    Article  CAS  PubMed  Google Scholar 

  40. Mathias PI, B’hymer C. Mercapturic acids: recent advances in their determination by liquid chromatography/mass spectrometry and their use in toxicant metabolism studies and in occupational and environmental exposure studies. Biomarkers. 2016;21:293–315. https://doi.org/10.3109/1354750X.2016.1141988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blair IA. Analysis of endogenous glutathione-adducts and their metabolites. Biomed Chromatogr. 2010;24:29–38. https://doi.org/10.1002/bmc.1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watson W, Mutti A. Role of biomarkers in monitoring exposures to chemicals: present position, future prospects. Biomarkers. 2004;9:211–42.

    Article  CAS  Google Scholar 

  43. Teichert J, Sohr R, Hennig L, Baumann F, Schoppmeyer K, Patzak U, et al. Identification and quantitation of the N-acetyl-L-cysteine S-conjugates of bendamustine and its sulfoxides in human bile after administration of bendamustine hydrochloride. Drug Metab Dispos. 2009;37:292–301. https://doi.org/10.1124/dmd.108.022855.

    Article  CAS  PubMed  Google Scholar 

  44. Black RM, Brewster K, Clarke RJ, Harrison JM. The chemistry of 1,1′-thiobis(2-chloroethane) (sulphur mustard). Part II.1 the synthesis of some conjugates with cysteine, n-acetylcysteine and n-acetylcysteine methyl ester. Phosphorus Sulfur Silicon Relat Elem. 1992;71:49–58. https://doi.org/10.1080/10426509208034495.

    Article  CAS  Google Scholar 

  45. Bielmann A, Sambiagio N, Wehr N, Gerber-Lemaire S, Bochet CG, Curty C. Synthesis of different glutathione–sulfur mustard adducts of verified and potential biomarkers. RSC Adv. 2018;8:23881–90. https://doi.org/10.1039/C8RA03360A.

    Article  CAS  Google Scholar 

  46. Batal M, Boudry I, Cléry-Barraud C, Mouret S, Douki T. Relative yields of monomeric and dimeric adducts induced by sulphur mustard in isolated and cellular DNA as determined by HPLC/tandem mass spectrometry. Toxicol Environ Chem. 2013;95:260–76. https://doi.org/10.1080/02772248.2012.758729.

    Article  CAS  Google Scholar 

  47. Ravanat J-L, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, et al. Cellular background level of 8-oxo-7,8-dihydro-2’-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis. 2002;23:1911–8. https://doi.org/10.1093/carcin/23.11.1911.

    Article  CAS  PubMed  Google Scholar 

  48. Douki T, Odin F, Caillat S, Favier A, Cadet J. Predominance of the 1,N2-propano 2′-deoxyguanosine adduct among 4-hydroxy-2-nonenal-induced DNA lesions. Free Radic Biol Med. 2004;37:62–70. https://doi.org/10.1016/j.freeradbiomed.2004.04.013.

    Article  CAS  PubMed  Google Scholar 

  49. U.S. Department of Health and Human Services, Food and Drug Administration (2018) Bioanalytical method validation guidance for industry. 44.

  50. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37:452–74. https://doi.org/10.1093/jat/bkt054.

  51. Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2:21. https://doi.org/10.4103/2229-5186.79345.

    Article  Google Scholar 

  52. Lawley P, Brookes P. Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem J. 1963;89:127–38. https://doi.org/10.1042/bj0890127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zubel T, Hochgesand S, John H, Steinritz D, Schmidt A, Bürkle A, et al. A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Arch Toxicol. 2019;93:61–79. https://doi.org/10.1007/s00204-018-2324-7.

    Article  CAS  PubMed  Google Scholar 

  54. Boysen G, Pachkowski BF, Nakamura J, Swenberg JA. The formation and biological significance of N7-guanine adducts. Mutat Res Toxicol Environ Mutagen. 2009;678:76–94. https://doi.org/10.1016/j.mrgentox.2009.05.006.

    Article  CAS  Google Scholar 

  55. Gates KS, Nooner T, Dutta S. Biologically relevant chemical reactions of N7-alkylguanine residues in DNA. Chem Res Toxicol. 2004;17:839–56. https://doi.org/10.1021/tx049965c.

    Article  CAS  PubMed  Google Scholar 

  56. Matijasevic Z, Precopio ML, Snyder JE, Ludlum DB. Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis. 2001;22:661–4. https://doi.org/10.1093/carcin/22.4.661.

    Article  CAS  PubMed  Google Scholar 

  57. Nagy SM, Golumbic C, Stein WH, Fruton JS, Bergmann M. The penetration of vesicant vapors into human skin. J Gen Physiol. 1946;29:441–69. https://doi.org/10.1085/jgp.29.6.441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390. https://doi.org/10.1515/BC.2009.033.

  59. Hughey RP, Rankin BB, Elce JS, Curthoys NP. Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis. Arch Biochem Biophys. 1978;186:211–7. https://doi.org/10.1016/0003-9861(78)90430-7.

    Article  CAS  PubMed  Google Scholar 

  60. Hanigan MH. γ-Glutamyl transpeptidase, a glutathionase: its expression and function in carcinogenesis. Chem Biol Interact. 1998;111–112:333–42. https://doi.org/10.1016/S0009-2797(97)00170-1.

    Article  PubMed  Google Scholar 

  61. Griffith OW. The role of glutathione turnover in the apparent renal secretion of cystine. J Biol Chem. 1981;256:12263–8.

    Article  CAS  Google Scholar 

  62. Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, et al. Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010;42:373–5. https://doi.org/10.1038/ng.566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hinchman CA, Rebbeor JF, Ballatori N. Efficient hepatic uptake and concentrative biliary excretion of a mercapturic acid. Am J Physiol Gastrointest Liver Physiol. 1998;275:G612–9. https://doi.org/10.1152/ajpgi.1998.275.4.G612.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the “Agence de l’Innovation de Défense” (French Defence Ministry) and the “NRBC” program of CEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roser, M., Béal, D., Eldin, C. et al. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog. Anal Bioanal Chem 413, 1337–1351 (2021). https://doi.org/10.1007/s00216-020-03096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03096-4

Keywords

Navigation