Abstract
The four-step Tessier sequential extraction procedure is a well-known approach used for environmental and geochemical studies in soil and sediments. However, a lack of reference materials limits its use making implementation and quality control cumbersome. This study applied Tessier sequential extraction to three globally used marine sediment certified reference materials (CRMs) including HISS-1, MESS-4, and PACS-3 with varying levels of contamination. The study analyzed the distribution of 17 elements throughout the extraction phases. Overall, the percent recovery (sum of steps vs total metal concentration) of all analyzed elements in Tessier extraction was 92% + 40% in HISS-1, 101% + 12% in MESS-4, and 102% + 10% in PACS-3. The observed uncertainty of the individual elemental concentrations averaged at 13%, which compares favorably with the 16% target uncertainty derived from the Horwitz equation. The reference data set produced here using the Tessier sequential extraction procedure will serve as a quality control and method development tool for laboratories.

Graphical abstract






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- °C:
-
Degree Celsius
- μm:
-
Micrometer
- BCR:
-
Community Bureau of Reference
- CI:
-
Confidence interval
- CRC:
-
Collision reaction cell
- CRM(s):
-
Certified reference material(s)
- DIW:
-
Deionized water
- eV:
-
Electron volt
- Ext sol#:
-
Extraction solution
- g:
-
Gram
- h:
-
Hour
- ICP:
-
Inductively coupled plasma
- ISO:
-
International Organization for Standardization
- L:
-
Liter
- log:
-
Logarithm
- mol L−1 :
-
Mole per liter
- mg:
-
Milligram
- min:
-
Minute
- mL:
-
Milliliter
- MS:
-
Mass spectrometry
- MΩ-cm :
-
Megohm-centimeter
- na:
-
Not applicable
- nd:
-
Not detected
- nr:
-
Not reported
- NRC:
-
National Research Council Canada
- OES:
-
Optical emission spectrometry
- rpm:
-
Revolutions per minute
- RSD:
-
Relative standard deviation
- SD:
-
Standard deviation
- S R :
-
Reproducibility standard deviation
- u std :
-
Standard uncertainty
- U :
-
Expanded uncertainty
- v:
-
Volume
- w:
-
Weight
References
Van Gestel CAM, Borgman E, Verweij RA, Diez OM. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicol Environ Saf. 2011;74(1):1–9. https://doi.org/10.1016/j.ecoenv.2010.10.001.
Moyé J, Picard-Lesteven T, Zouhri L, El Amari K, Hibti M, Benkaddour A. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco). Environ Pollut. 2017;231:899–907. https://doi.org/10.1016/j.envpol.2017.07.044.
Li YH, Schoonmaker JE. 9.1 - Chemical composition and mineralogy of marine sediments. In: Mackenzie FT, editor. Treatise on geochemistry: second edition. Elsevier-Pergamon; 2003. p. 1–32. https://doi.org/10.1016/B978-0-08-095975-7.00701-4.
Worakhunpiset S. Trace elements in marine sediment and organisms in the Gulf of Thailand. Int J Environ Res Public Health. 2018;15(4):810. https://doi.org/10.3390/ijerph15040810.
Joksimović D, Stanković S. Accumulation of trace metals in marine organisms of the southeastern Adriatic coast, Montenegro. J Serbian Chem Soc. 2012;77(1):105–17. https://doi.org/10.2298/JSC110323159J.
Chouvelon T, Strady E, Harmelin-Vivien M, Radakovitch O, Brach-Papa C, Crochet S, et al. Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Mar Pollut Bull. 2019;146:1013–30. https://doi.org/10.1016/j.marpolbul.2019.07.047.
Shefer E, Silverman J, Herut B. Trace metal bioaccumulation in Israeli Mediterranean coastal marine mollusks. Quat Int. 2015;390:44–55. https://doi.org/10.1016/j.quaint.2015.10.030.
Galkus A, Joksas K, Stakeniene R, Lagunaviciene L. Heavy metal contamination of harbor bottom sediments. Polish J Environ Stud. 2012;21(6):1583–94.
Kulkarni P, Chellam S, Ghurye G, Fraser MP. In situ generation of hydrofluoric acid during microwave digestion of atmospheric particulate matter prior to trace element analysis using inductively coupled plasma mass spectrometry. Environ Eng Sci. 2003;20(6):517–31. https://www.liebertpub.com/doi/10.1089/109287503770736041. Accessed 20 Aug 2020
Lo JM, Sakamoto H. Comparison of the acid combinations in microwave-assisted digestion of marine sediments for heavy metal analyses. Anal Sci. 2005;21(10):1181–4. https://doi.org/10.2116/analsci.21.1181.
Salomons W, Förstner U. Trace metal analysis on polluted sediments: part II: evaluation of environmental impact. Environ Technol Lett. 1980;1(11):506–17. Available from: https://www.tandfonline.com/doi/abs/10.1080/09593338009384007.
Chester R, Hughes MJ. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem Geol. 1967;2(C):249–62. https://doi.org/10.1016/0009-2541(67)90025-3.
Barber C. Major and trace element associations in limestones and dolomites. Chem Geol. 1974;14(4):273–80. https://doi.org/10.1016/0009-2541(74)90064-3.
Usero J, Gamero M, Morillo J, Gracia I. Comparative study of three sequential extraction procedures for metals in marine sediments. Environ Int. 1998;24(4):487–96. https://doi.org/10.1016/S0160-4120(98)00028-2.
Gupta SK, Chen KY. Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environ Lett. 1975;10(2):129–58. https://doi.org/10.1080/00139307509435816.
Ure MU, Thomas R, Littlejohn D. Ammonium acetate extracts and their analysis for the speciation of metal ions in soils and sediments. Int J Environ Anal Chem. 1993;51(1–4):65–84. https://www.tandfonline.com/doi/abs/10.1080/03067319308027612.
Quevauviller P, Griepink B, Rauret G. Single and sequential extraction in sediments and soils. Int J Environ Anal Chem. 1993;51(1–4):231–5. https://doi.org/10.1080/00139307509435816.
Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–51. https://doi.org/10.1021/ac50043a017.
European Commission. The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following a sequential extraction procedure - BCR 701. Commun Res. 2001;1–88. https://op.europa.eu/en/publication-detail/-/publication/02c41803-8f6d-41f2-a73d-c47225ff8c6e.
López-Sánchez JF, Sahuquillo A, Fiedler HD, Rubio R, Rauret G, Muntau H, et al. CRM 601, A stable material for its extractable content of heavy metals. Analyst. 1998 [cited 2020 Aug 20];123(8):1675–7. Available from: https://pubs.rsc.org/en/content/articlehtml/1998/an/a802720j.
Kumkrong P, Mercier PHJ, Pihilligawa Gedara I, Mihai O, Tyo DD, Cindy J, et al. Determination of 27 metals in HISS-1, MESS-4 and PACS-3 marine sediment certified reference materials by the BCR sequential extraction. Talanta. 2021;221:121543. https://doi.org/10.1016/j.talanta.2020.121543.
Sungur A, Soylak M, Ozcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem Speciat Bioavailab. 2014;26(4):219–30. https://www.tandfonline.com/doi/abs/10.3184/095422914X14147781158674. Accessed 11 Aug 2020
Kubota R, Ohta A, Okai T. Speciation of 38 elements in eight GSJ geochemical sedimentary reference materials determined using a sequential extraction technique. Geochem J. 2014;48(2):165–88. https://doi.org/10.2343/geochemj.2.0297.
Long Y-Y, Hu L-F, Fang C-R, Wu Y-Y, Shen D-S. An evaluation of the modified BCR sequential extraction procedure to assess the potential mobility of copper and zinc in MSW. Microchem J. 2009;91(1):1–5. https://doi.org/10.1016/j.microc.2008.05.006.
Craba L, Brunori C, Galletti M, Cremisini C, Morabito R. Comparison of three sequential extraction procedures (original and modified 3 steps BCR procedure) applied to sediments of different origin. Ann Chim. 2004;94(56):409–19. Available from: http://doi.wiley.com/10.1002/adic.200490050. Accessed 11 Aug 2020
Tokalioǧlu Ş, Kartal Ş, Birol G. Comparison of three sequential extraction procedures for partitioning of heavy metals in car park dusts. J Environ Monit. 2003;5(3):468–76. Available from: https://pubs.rsc.org/en/content/articlehtml/2003/em/b300047h. Accessed 11 Aug 2020
Berman S, Boyko V, Clancy V, Lam J, Maxwell P, McLaren J, et al. HISS-1: marine sediment reference material for trace metals and other constituents. 1997. https://nrc-digital-repository.canada.ca/eng/view/object/?id=0f2ce620-b76b-4578-ba06-6aae6e632038. Accessed 11 Aug 2020
Willie S, Nadeau K, Gedara Pihillagawa I, Yang L, Clancy V, Grinberg P, et al. MESS-4: Marine Sediment Reference Material for Trace Metals and other Constituents. 2014. Available from: https://nrc-digital-repository.canada.ca/eng/view/object/?id=8a3fd39a-c068-4ce0-820c-d08cf742a20a. Accessed 11 Aug 2020
Willie S, Boyko V, Brophy C, Clancy V, Gedara Pihillagawa I, Grinberg P, et al. PACS-3: marine sediment reference material for trace metals and other constituents. 2013. Available from: https://nrc-digital-repository.canada.ca/eng/view/object/?id=6616d284-f101-4b7a-b3c1-a5280e4bd355. Accessed 11 Aug 2020
Koepke A, Lafarge T, Possolo A, Toman B. NIST consensus builder—user’s manual. NIST, editor. U.S. Department of Commerce; 2017. https://consensus.nist.gov/app_direct/nicob/NISTConsensusBuilder-UserManual.pdf. Accessed 11 Aug 2020
Cox M, Harris P, Ellison S. Use of an “excess-variance” approach for the estimation of a key comparison reference value, associated standard uncertainty and degrees of equivalence for CCQM key comparison data. CCQM/11–18. 2011;1–10. https://pdfs.semanticscholar.org/8f82/448ad8ae426308b1b631748d4e3ed69e891b.pdf
Beldì G, Jakubowska N, Simoneau C. Report of the interlaboratory comparison organised by the European Reference Laboratory for Food Contact Material - formaldehyde in 3% acetic acid migration solution - follow up exercise, EUR 26206 EN,. 2013. https://op.europa.eu/en/publication-detail/-/publication/6e9cdb24-f7e2-41c4-9edf-d21fe9daa9ae/language-en. Accessed 11 Aug 2020
Thompson M. The amazing Horwitz function. amc technical brief. 2004. Report No.: 17. https://www.rsc.org/images/horwitz-function-technical-brief-17_tcm18-214859.pdf. Accessed 11 Aug 2020
Horwitz W. Evaluation of analytical methods used for regulation of foods and drugs. Anal Chem. 1982 [cited 2020 Aug 20];54(1):67–76. https://pubs.acs.org/doi/abs/10.1021/ac00238a002. Accessed 20 Aug 2020
Ellison SLR, Williams A, editors. Eurachem / CITAC Guide: Quantifying uncertainty in analytical measurement. Third edit. Eurachem / CITAC Guide CG 4. Eurachem; 2012. 141 p. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. Accessed 20 Aug 2020
Fleischer M. Recent estimates of the abundance of the elements in the earth’s crust. Geol Servey Circ 285. 1953;1–14. https://pubs.er.usgs.gov/publication/cir285. Accessed 20 Aug 2020
Filipkowska A, Kowalewska G, Pavoni B. Organotin compounds in surface sediments of the southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environ Sci Pollut Res. 2014;21(3):2077–87. https://doi.org/10.1007/s11356-013-2115-x.
Kelly WR, Murphy KE, Becker DA, Mann JL. Determination of Cr in certified reference material HISS-1, marine sediment, by cold plasma isotope dilution ICP-MS and INAA: comparison of microwave versus closed (Carius) tube digestion. J Anal At Spectrom. 2003;18(2):166–9. https://pubs.rsc.org/en/content/articlehtml/2003/ja/b210056h. Accessed 11 Aug 2020
Acknowledgments
The authors would like to thank the Inorganic Metrology Group and the Environmental Advances in Mining Program at the National Research Council of Canada for support of materials and facilities required to complete this project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
(PDF 447 kb)
Rights and permissions
About this article
Cite this article
Kumkrong, P., Mihai, O., Mercier, P.H.J. et al. Tessier sequential extraction on 17 elements from three marine sediment certified reference materials (HISS-1, MESS-4, and PACS-3). Anal Bioanal Chem 413, 1047–1057 (2021). https://doi.org/10.1007/s00216-020-03063-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-020-03063-z


