Skip to main content

Advertisement

Log in

Tessier sequential extraction on 17 elements from three marine sediment certified reference materials (HISS-1, MESS-4, and PACS-3)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The four-step Tessier sequential extraction procedure is a well-known approach used for environmental and geochemical studies in soil and sediments. However, a lack of reference materials limits its use making implementation and quality control cumbersome. This study applied Tessier sequential extraction to three globally used marine sediment certified reference materials (CRMs) including HISS-1, MESS-4, and PACS-3 with varying levels of contamination. The study analyzed the distribution of 17 elements throughout the extraction phases. Overall, the percent recovery (sum of steps vs total metal concentration) of all analyzed elements in Tessier extraction was 92% + 40% in HISS-1, 101% + 12% in MESS-4, and 102% + 10% in PACS-3. The observed uncertainty of the individual elemental concentrations averaged at 13%, which compares favorably with the 16% target uncertainty derived from the Horwitz equation. The reference data set produced here using the Tessier sequential extraction procedure will serve as a quality control and method development tool for laboratories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

°C:

Degree Celsius

μm:

Micrometer

BCR:

Community Bureau of Reference

CI:

Confidence interval

CRC:

Collision reaction cell

CRM(s):

Certified reference material(s)

DIW:

Deionized water

eV:

Electron volt

Ext sol#:

Extraction solution

g:

Gram

h:

Hour

ICP:

Inductively coupled plasma

ISO:

International Organization for Standardization

L:

Liter

log:

Logarithm

mol L−1 :

Mole per liter

mg:

Milligram

min:

Minute

mL:

Milliliter

MS:

Mass spectrometry

MΩ-cm :

Megohm-centimeter

na:

Not applicable

nd:

Not detected

nr:

Not reported

NRC:

National Research Council Canada

OES:

Optical emission spectrometry

rpm:

Revolutions per minute

RSD:

Relative standard deviation

SD:

Standard deviation

S R :

Reproducibility standard deviation

u std :

Standard uncertainty

U :

Expanded uncertainty

v:

Volume

w:

Weight

References

  1. Van Gestel CAM, Borgman E, Verweij RA, Diez OM. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicol Environ Saf. 2011;74(1):1–9. https://doi.org/10.1016/j.ecoenv.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  2. Moyé J, Picard-Lesteven T, Zouhri L, El Amari K, Hibti M, Benkaddour A. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco). Environ Pollut. 2017;231:899–907. https://doi.org/10.1016/j.envpol.2017.07.044.

    Article  CAS  PubMed  Google Scholar 

  3. Li YH, Schoonmaker JE. 9.1 - Chemical composition and mineralogy of marine sediments. In: Mackenzie FT, editor. Treatise on geochemistry: second edition. Elsevier-Pergamon; 2003. p. 1–32. https://doi.org/10.1016/B978-0-08-095975-7.00701-4.

  4. Worakhunpiset S. Trace elements in marine sediment and organisms in the Gulf of Thailand. Int J Environ Res Public Health. 2018;15(4):810. https://doi.org/10.3390/ijerph15040810.

    Article  CAS  PubMed Central  Google Scholar 

  5. Joksimović D, Stanković S. Accumulation of trace metals in marine organisms of the southeastern Adriatic coast, Montenegro. J Serbian Chem Soc. 2012;77(1):105–17. https://doi.org/10.2298/JSC110323159J.

    Article  CAS  Google Scholar 

  6. Chouvelon T, Strady E, Harmelin-Vivien M, Radakovitch O, Brach-Papa C, Crochet S, et al. Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Mar Pollut Bull. 2019;146:1013–30. https://doi.org/10.1016/j.marpolbul.2019.07.047.

    Article  CAS  PubMed  Google Scholar 

  7. Shefer E, Silverman J, Herut B. Trace metal bioaccumulation in Israeli Mediterranean coastal marine mollusks. Quat Int. 2015;390:44–55. https://doi.org/10.1016/j.quaint.2015.10.030.

    Article  Google Scholar 

  8. Galkus A, Joksas K, Stakeniene R, Lagunaviciene L. Heavy metal contamination of harbor bottom sediments. Polish J Environ Stud. 2012;21(6):1583–94.

    CAS  Google Scholar 

  9. Kulkarni P, Chellam S, Ghurye G, Fraser MP. In situ generation of hydrofluoric acid during microwave digestion of atmospheric particulate matter prior to trace element analysis using inductively coupled plasma mass spectrometry. Environ Eng Sci. 2003;20(6):517–31. https://www.liebertpub.com/doi/10.1089/109287503770736041. Accessed 20 Aug 2020

  10. Lo JM, Sakamoto H. Comparison of the acid combinations in microwave-assisted digestion of marine sediments for heavy metal analyses. Anal Sci. 2005;21(10):1181–4. https://doi.org/10.2116/analsci.21.1181.

    Article  CAS  PubMed  Google Scholar 

  11. Salomons W, Förstner U. Trace metal analysis on polluted sediments: part II: evaluation of environmental impact. Environ Technol Lett. 1980;1(11):506–17. Available from: https://www.tandfonline.com/doi/abs/10.1080/09593338009384007.

  12. Chester R, Hughes MJ. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem Geol. 1967;2(C):249–62. https://doi.org/10.1016/0009-2541(67)90025-3.

    Article  CAS  Google Scholar 

  13. Barber C. Major and trace element associations in limestones and dolomites. Chem Geol. 1974;14(4):273–80. https://doi.org/10.1016/0009-2541(74)90064-3.

    Article  CAS  Google Scholar 

  14. Usero J, Gamero M, Morillo J, Gracia I. Comparative study of three sequential extraction procedures for metals in marine sediments. Environ Int. 1998;24(4):487–96. https://doi.org/10.1016/S0160-4120(98)00028-2.

    Article  CAS  Google Scholar 

  15. Gupta SK, Chen KY. Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environ Lett. 1975;10(2):129–58. https://doi.org/10.1080/00139307509435816.

    Article  CAS  PubMed  Google Scholar 

  16. Ure MU, Thomas R, Littlejohn D. Ammonium acetate extracts and their analysis for the speciation of metal ions in soils and sediments. Int J Environ Anal Chem. 1993;51(1–4):65–84. https://www.tandfonline.com/doi/abs/10.1080/03067319308027612.

  17. Quevauviller P, Griepink B, Rauret G. Single and sequential extraction in sediments and soils. Int J Environ Anal Chem. 1993;51(1–4):231–5. https://doi.org/10.1080/00139307509435816.

    Article  Google Scholar 

  18. Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–51. https://doi.org/10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  19. European Commission. The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following a sequential extraction procedure - BCR 701. Commun Res. 2001;1–88. https://op.europa.eu/en/publication-detail/-/publication/02c41803-8f6d-41f2-a73d-c47225ff8c6e.

  20. López-Sánchez JF, Sahuquillo A, Fiedler HD, Rubio R, Rauret G, Muntau H, et al. CRM 601, A stable material for its extractable content of heavy metals. Analyst. 1998 [cited 2020 Aug 20];123(8):1675–7. Available from: https://pubs.rsc.org/en/content/articlehtml/1998/an/a802720j.

  21. Kumkrong P, Mercier PHJ, Pihilligawa Gedara I, Mihai O, Tyo DD, Cindy J, et al. Determination of 27 metals in HISS-1, MESS-4 and PACS-3 marine sediment certified reference materials by the BCR sequential extraction. Talanta. 2021;221:121543. https://doi.org/10.1016/j.talanta.2020.121543.

    Article  CAS  PubMed  Google Scholar 

  22. Sungur A, Soylak M, Ozcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem Speciat Bioavailab. 2014;26(4):219–30. https://www.tandfonline.com/doi/abs/10.3184/095422914X14147781158674. Accessed 11 Aug 2020

  23. Kubota R, Ohta A, Okai T. Speciation of 38 elements in eight GSJ geochemical sedimentary reference materials determined using a sequential extraction technique. Geochem J. 2014;48(2):165–88. https://doi.org/10.2343/geochemj.2.0297.

    Article  CAS  Google Scholar 

  24. Long Y-Y, Hu L-F, Fang C-R, Wu Y-Y, Shen D-S. An evaluation of the modified BCR sequential extraction procedure to assess the potential mobility of copper and zinc in MSW. Microchem J. 2009;91(1):1–5. https://doi.org/10.1016/j.microc.2008.05.006.

    Article  CAS  Google Scholar 

  25. Craba L, Brunori C, Galletti M, Cremisini C, Morabito R. Comparison of three sequential extraction procedures (original and modified 3 steps BCR procedure) applied to sediments of different origin. Ann Chim. 2004;94(56):409–19. Available from: http://doi.wiley.com/10.1002/adic.200490050. Accessed 11 Aug 2020

  26. Tokalioǧlu Ş, Kartal Ş, Birol G. Comparison of three sequential extraction procedures for partitioning of heavy metals in car park dusts. J Environ Monit. 2003;5(3):468–76. Available from: https://pubs.rsc.org/en/content/articlehtml/2003/em/b300047h. Accessed 11 Aug 2020

  27. Berman S, Boyko V, Clancy V, Lam J, Maxwell P, McLaren J, et al. HISS-1: marine sediment reference material for trace metals and other constituents. 1997. https://nrc-digital-repository.canada.ca/eng/view/object/?id=0f2ce620-b76b-4578-ba06-6aae6e632038. Accessed 11 Aug 2020

  28. Willie S, Nadeau K, Gedara Pihillagawa I, Yang L, Clancy V, Grinberg P, et al. MESS-4: Marine Sediment Reference Material for Trace Metals and other Constituents. 2014. Available from: https://nrc-digital-repository.canada.ca/eng/view/object/?id=8a3fd39a-c068-4ce0-820c-d08cf742a20a. Accessed 11 Aug 2020

  29. Willie S, Boyko V, Brophy C, Clancy V, Gedara Pihillagawa I, Grinberg P, et al. PACS-3: marine sediment reference material for trace metals and other constituents. 2013. Available from: https://nrc-digital-repository.canada.ca/eng/view/object/?id=6616d284-f101-4b7a-b3c1-a5280e4bd355. Accessed 11 Aug 2020

  30. Koepke A, Lafarge T, Possolo A, Toman B. NIST consensus builder—user’s manual. NIST, editor. U.S. Department of Commerce; 2017. https://consensus.nist.gov/app_direct/nicob/NISTConsensusBuilder-UserManual.pdf. Accessed 11 Aug 2020

  31. Cox M, Harris P, Ellison S. Use of an “excess-variance” approach for the estimation of a key comparison reference value, associated standard uncertainty and degrees of equivalence for CCQM key comparison data. CCQM/11–18. 2011;1–10. https://pdfs.semanticscholar.org/8f82/448ad8ae426308b1b631748d4e3ed69e891b.pdf

  32. Beldì G, Jakubowska N, Simoneau C. Report of the interlaboratory comparison organised by the European Reference Laboratory for Food Contact Material - formaldehyde in 3% acetic acid migration solution - follow up exercise, EUR 26206 EN,. 2013. https://op.europa.eu/en/publication-detail/-/publication/6e9cdb24-f7e2-41c4-9edf-d21fe9daa9ae/language-en. Accessed 11 Aug 2020

  33. Thompson M. The amazing Horwitz function. amc technical brief. 2004. Report No.: 17. https://www.rsc.org/images/horwitz-function-technical-brief-17_tcm18-214859.pdf. Accessed 11 Aug 2020

  34. Horwitz W. Evaluation of analytical methods used for regulation of foods and drugs. Anal Chem. 1982 [cited 2020 Aug 20];54(1):67–76. https://pubs.acs.org/doi/abs/10.1021/ac00238a002. Accessed 20 Aug 2020

  35. Ellison SLR, Williams A, editors. Eurachem / CITAC Guide: Quantifying uncertainty in analytical measurement. Third edit. Eurachem / CITAC Guide CG 4. Eurachem; 2012. 141 p. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. Accessed 20 Aug 2020

  36. Fleischer M. Recent estimates of the abundance of the elements in the earth’s crust. Geol Servey Circ 285. 1953;1–14. https://pubs.er.usgs.gov/publication/cir285. Accessed 20 Aug 2020

  37. Filipkowska A, Kowalewska G, Pavoni B. Organotin compounds in surface sediments of the southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environ Sci Pollut Res. 2014;21(3):2077–87. https://doi.org/10.1007/s11356-013-2115-x.

    Article  CAS  Google Scholar 

  38. Kelly WR, Murphy KE, Becker DA, Mann JL. Determination of Cr in certified reference material HISS-1, marine sediment, by cold plasma isotope dilution ICP-MS and INAA: comparison of microwave versus closed (Carius) tube digestion. J Anal At Spectrom. 2003;18(2):166–9. https://pubs.rsc.org/en/content/articlehtml/2003/ja/b210056h. Accessed 11 Aug 2020

Download references

Acknowledgments

The authors would like to thank the Inorganic Metrology Group and the Environmental Advances in Mining Program at the National Research Council of Canada for support of materials and facilities required to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramee Kumkrong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumkrong, P., Mihai, O., Mercier, P.H.J. et al. Tessier sequential extraction on 17 elements from three marine sediment certified reference materials (HISS-1, MESS-4, and PACS-3). Anal Bioanal Chem 413, 1047–1057 (2021). https://doi.org/10.1007/s00216-020-03063-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03063-z

Keywords