Fc-specific and covalent conjugation of a fluorescent protein to a native antibody through a photoconjugation strategy for fabrication of a novel photostable fluorescent antibody

Abstract

Fluorophore–antibody conjugates with high photobleaching resistance, high chemical stability, and Fc-specific attachment is a great advantage for immunofluorescence imaging. Here, an Fc-binding protein (Z-domain) carrying a photo-cross-linker (p-benzoylphenylalanine, Bpa) fused with enhanced green fluorescent protein (EGFP), namely photoactivatable ZBpa–EGFP recombinant, was directly generated using the aminoacyl-tRNA synthetase/suppressor tRNA technique without any further modification. By employing the photoactivatable ZBpa–EGFP, an optimal approach was successfully developed which enabled EGFP to site-selectively and covalently attach to native antibody (IgG) with approximately 90% conjugation efficiency. After characterizing the Fc-specific and covalent manner of the EGFP-photoconjugated antibody, its excellent photobleaching resistance for immunofluorescence imaging was demonstrated in a model study by monitoring the toll-like receptor 4 (TLR4) expression in HepG2 cells. The proposed approach here for the preparation of a novel fluorescent antibody is available and reliable, which would play an important role in fluorescence immunoassay, and is expected to be extended to the generation of other biomolecule-photoconjugated antibodies, such as other fluorescent proteins for multiplex immunofluorescence imaging or reporter enzymes for highly sensitive enzyme immunoassays.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Takai H, Kato A, Nakamura T, Tachibana T, Sakurai T, Nanami M, et al. The importance of characterization of FITC-labeled antibodies used in tissue cross-reactivity studies. Acta Histochem. 2011;113(4):472–6.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Shoemark A, Frost E, Dixon M, Ollosson S, Kilpin K, Patel M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2017;196(1):94–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Zhang Y, Delbruck AI, Off CL, Benke S, Mathys A. Flow cytometry combined with single cell sorting to study heterogeneous germination of Bacillus spores under high pressure. Front Microbiol. 2019;10:3118.

    PubMed  Article  Google Scholar 

  4. 4.

    Barnard G. The development of fluorescence immunoassays. Prog Clin Biol Res. 1988;285:15–37.

    CAS  PubMed  Google Scholar 

  5. 5.

    Chattopadhaya S, Abu Bakar FB, Yao SQ. Expanding the chemical biologist’s tool kit: chemical labelling strategies and its applications. Curr Med Chem. 2009;16(34):4527–43.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Shrestha D, Bagosi A, Szollosi J, Jenei A. Comparative study of the three different fluorophore antibody conjugation strategies. Anal Bioanal Chem. 2012;404(5):1449–63.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Perols A, Karlstrom AE. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains. Bioconjug Chem. 2014;25(3):481–8.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017;116:95–111.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Zhao JJ, Chen J, Wang ZP, Pan J, Huang YH. Double labeling and comparison of fluorescence intensity and photostability between quantum dots and FITC in oral tumors. Mol Med Rep. 2011;4(3):425–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Li D, Qin W, Xu B, Qian J, Tang BZ. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv Mater. 2017;29(43).

  11. 11.

    Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997;73(5):2782–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Casey JL, Coley AM, Tilley LM, Foley M. Green fluorescent antibodies: novel in vitro tools. Protein Eng. 2000;13(6):445–52.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Wall KP, Dillon R, Knowles MK. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course. Biochem Mol Biol Educ. 2015;43(1):52–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Sakamoto S, Tanizaki Y, Pongkitwitoon B, Tanaka H, Morimoto S. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay. Protein Expr Purif. 2011;77(1):124–30.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Lu Q, Li X, Zhao J, Zhu J, Luo Y, Duan H, et al. Nanobody-horseradish peroxidase and-EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. J Nanobiotechnology. 2020;18(1):7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Fujino H, Aoki T, Watabe H. A highly sensitive assay for proteases using staphylococcal protein A fused with enhanced green fluorescent protein. Biosci Biotechnol Biochem. 2002;66(7):1601–4.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Yang HM, Chen Y, Gao ZQ, Tang JB. Preparation of a bio-immunoreagent between ZZ affibody and enhanced green fluorescent protein for immunofluorescence applications. World J Microbiol Biotechnol. 2012;28(3):1281–5.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Lindmark R, Thoren-Tolling K, Sjoquist J. Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J Immunol Methods. 1983;62(1):1–13.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Jansson B, Uhlen M, Nygren PA. All individual domains of staphylococcal protein A show Fab binding. FEMS Immunol Med Microbiol. 1998;20(1):69–78.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hahn R, Shimahara K, Steindl F, Jungbauer A. Comparison of protein A affinity sorbents III. Life time study. J Chromatogr A. 2006;1102(1–2):224–31.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Yang HM, Bao RM, Yu CM, Lv YN, Zhang WF, Tang JB. Fc-specific biotinylation of antibody using an engineered photoactivatable Z-biotin and its biosensing application. Anal Chim Acta. 2017;949:76–82.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Murale DP, Hong SC, Haque MM, Lee JS. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 2016;15:14.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Konrad A, Karlstrom AE, Hober S. Covalent immunoglobulin labeling through a photoactivable synthetic Z domain. Bioconjug Chem. 2011;22(12):2395–403.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Perols A, Arcos Famme M, Eriksson KA. Site-specific antibody labeling by covalent photoconjugation of Z domains functionalized for alkyne-azidecycloaddition reactions. Chembiochem. 2015;16(17):2522–9.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989;244(4901):182–8.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Smolskaya S, Andreev YA. Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: methodology development and recent achievement. Biomolecules. 2019;9(7):255.

    CAS  PubMed Central  Article  Google Scholar 

  27. 27.

    Hui JZ, Al Zaki A, Cheng Z, Popik V, Zhang H, LuningPrak ET, et al. Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles. Small. 2014;10(16):3354–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Hui JZ, Tsourkas A. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG. Bioconjug Chem. 2014;25(9):1709–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Yu F, Järver P, Nygren PÅ. Tailor-making a protein A-derived domain for efficient site-specific photocoupling to Fc of mouse IgG1. PloS One. 2013;8(2):e56597.

  30. 30.

    Lee Y, Jeong J, Lee G, Moon JH, Lee MK. Covalent and oriented surface immobilization of antibody using photoactivatable antibody Fc-binding protein expressed in Escherichia coli. Anal Chem. 2016;88(19):9503–9.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kanje S, Hober S. In vivo biotinylation and incorporation of a photo-inducible unnatural amino acid to an antibody-binding domain improve site-specific labeling of antibodies. Biotechnol J. 2015;10(4):564–74.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Hui JZ, Tamsen S, Song Y, Tsourkas A. LASIC: light activated site-specific conjugation of native IgGs. Bioconjug Chem. 2015;26(8):1456–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Wouters SFA, Vugs WJP, Arts R, et al. Bioluminescent antibodies through photoconjugation of protein G-luciferase fusion proteins. Bioconjug Chem. 2020;31(3):656–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock. 2006;26(5):430–7.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ding J, Liu Q. Toll-like receptor 4: a promising therapeutic target for pneumonia caused by gram-negative bacteria. J Cell Mol Med. 2019;23(9):5868–75.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Scientific Foundation of China (81971998) and the Natural Scientific Foundation of Shandong Province (ZR2018MC009).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hong-Ming Yang or Jin-Bao Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 478 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, XT., Fu, XY., Gao, XY. et al. Fc-specific and covalent conjugation of a fluorescent protein to a native antibody through a photoconjugation strategy for fabrication of a novel photostable fluorescent antibody. Anal Bioanal Chem (2020). https://doi.org/10.1007/s00216-020-03051-3

Download citation

Keywords

  • Photoactivatable Z
  • EGFP
  • Photoconjugation
  • Fc-specific covalent conjugates
  • Immunoglobulin G
  • Photobleaching resistance