Skip to main content
Log in

A hybrid of ultrathin metal-organic framework sheet and ultrasmall copper nanoparticles for detection of hydrogen peroxide with enhanced activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we design and synthesize a novel 2D Cu-tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal–organic framework (MOF) sheet and ultrasmall Cu5.4O nanoparticle (Cu5.4O USNP) hybrid (Cu-TCPP MOF/Cu5.4O nanocomposite). The graphene-like ultrathin Cu-TCPP MOF sheets offer high surface-to-volume atom ratios and many active sites, which is beneficial for loading more Cu5.4O USNPs. The Cu5.4O USNPs with ultrasmall size (<5 nm) have promising conductivity and excellent enzymatic ability for H2O2. The successfully prepared nanocomposites are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The 2D graphene-like ultrathin Cu-TCPP MOF sheets show no H2O2-sensing signals, whereas Cu5.4O USNPs exhibit a clear reduction peak for detection of H2O2. Interestingly, the combination of two kinds of nanomaterials improved the H2O2 sensing ability due to their synergistic effect. The properties of the unmodified electrodes and the Cu-TCPP MOF/Cu5.4O nanocomposite-modified electrodes were systemically studied by cyclic voltammetry (CV), current-time (i-t) response, and square-wave voltammetry (SWV) techniques. The electrochemical sensor for the detection of H2O2 based on the Cu-TCPP MOF/Cu5.4O nanocomposite has a lower detection limit of 0.13 μmol·L−1 and wider linear range of 0.1 × 10−6 ~ 0.59 × 10−3 mol·L−1 and 1.59 × 10−3 ~ 20.59 × 10−3 mol·L−1 when compared with the Cu5.4O USNPs-modified electrode. The electrochemical sensor can be further used to detect H2O2 produced by cells.

The mechanism for sensing H2O2 produced from cells based on a Cu-TCPP MOF/Cu5.4O USNPs nanocomposite-modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Urtizberea A, Natividad E, Alonso PJ, Andrés MA, Gascón I, Goldmann M, et al. A porphyrin spin qubit and its 2D framework nanosheets. Adv Funct Mater. 2018;28:1801695.

    Google Scholar 

  2. Dhakshinamoorthy A, Asiri AM, Garcia H. Metal-organic frameworks catalyzed C-C and C-heteroatom coupling reactions. Chem Soc Rev. 2015;44:1922–47.

    CAS  PubMed  Google Scholar 

  3. Zhai Q-G, Bu X-H, Zhao X, Li D-S, Feng PY. Pore space partition in metal-organic frameworks. Acc Chem Res. 2017;50:407–17.

    CAS  PubMed  Google Scholar 

  4. He T, Ni B, Zhang SM, Gong Y, Wang HQ, Gu L, et al. Ultrathin 2D zirconium metal-organic framework Nanosheets: preparation and application in Photocatalysis. Small. 2018;14:1703929.

    Google Scholar 

  5. Zhang ZJ, Nguyen HT, Miller SA, Ploskonka AM, DeCoste JB, Cohen SM. Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J Am Chem Soc. 2016;138:920–5.

    CAS  PubMed  Google Scholar 

  6. Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225–331.

    CAS  PubMed  Google Scholar 

  7. Huang X, Qi XY, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.

    CAS  PubMed  Google Scholar 

  8. Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weselinski LJ, Solovyeva V, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc. 2015;137:13308–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Wang KC, Sun YJ, Lollar CT, Li JL, Zhou H-C. Recent advances in gas storage and separation using metal-organic frameworks. Mater Today. 2018;21:108–21.

    CAS  Google Scholar 

  10. Assen AH, Yassine O, Shekhah O, Eddaoudi M, Salama KN. MOFs for the sensitive detection of Ammonia: deployment of fcu-MOF thin films as effective chemical capacitive sensors. ACS Sens. 2017;2:1294–301.

    CAS  PubMed  Google Scholar 

  11. Wu SY, Min H, Shi W, Cheng P. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors. Adv Mater. 2019;32:1805871.

    Google Scholar 

  12. Zhou GX, Wang YS, Jin ZK, Zhao PH, Zhang H, Wen YY, et al. Porphyrin-palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided Hydrogenothermal Cancer therapy. Nanoscale Horiz. 2019;4:1185.

    CAS  Google Scholar 

  13. Zhang W, Lu J, Gao XN, Li P, Zhang W, Ma Y, et al. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a Nano-MOF with CuII as the active center. Angew Chem Int Ed. 2018;57:4985–90.

    Google Scholar 

  14. Liang ZB, Qu C, Xia DG, Zou RQ, Xu Q. Atomically dispersed metal sites in MOF-BasedMaterials for Electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed. 2018;57:9604–33.

    CAS  Google Scholar 

  15. Dhakshinamoorthy A, Asiri AM, Garcia H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed. 2016;55:5414–45.

    CAS  Google Scholar 

  16. Park J, Xu M, Li FY, Zhou H-C. 3D long-range triplet migration in a water-stable metal-organic framework for Upconversion-based ultralow-power in vivo imaging. J Am Chem Soc. 2018;140:5493–9.

    CAS  PubMed  Google Scholar 

  17. Muldoon PF, Collet G, Eliseeva SV, Luo T-Y, Petoud S, Rosi NL. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal-organic frameworks for biological imaging. J Am Chem Soc. 2020;142:8776–81.

    PubMed  Google Scholar 

  18. Kim S, Wang H, Lee YM. 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew Chem Int Ed. 2019;131:17674–89.

    Google Scholar 

  19. Pen Y, Li YS, Ban YJ, Jin H, Jiao WM, Liu XL, et al. Metal-organic framework Nanosheets as building blocks for molecular sieving membranes. Science. 2014;346:1356–9.

    Google Scholar 

  20. Song F, Hu XL. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun. 2014;5:1–9.

    Google Scholar 

  21. Zhao YW, Wang JN, Pei RJ. Micron-sized ultrathin metal-organic framework sheet. J Am Chem Soc. 2020;142:10331–6.

    CAS  PubMed  Google Scholar 

  22. Rodriguez-San-Miguel D, Amo-Ochoa P, Zamora F. MasterChem: cooking 2D-polymers. Chem Commun. 2016;52:4113–27.

    CAS  Google Scholar 

  23. Beldon PJ, Tominaka S, Singh P, Dasgupta TS, Bithell EG, Cheetham AK. Layered structures and nanosheets of pyrimidinethiolate coordination polymers. Chem Commun. 2014;50:3955–7.

    CAS  Google Scholar 

  24. Zheng ZK, Grünker R, Feng XL. Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation. Adv Mater. 2016;28:6529–45.

    CAS  PubMed  Google Scholar 

  25. Bai WS, Li SJ, Ma JP, Cao W, Zheng JB. Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based xD-2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J Mater Chem A. 2019;7:9086–98.

    CAS  Google Scholar 

  26. Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.

    CAS  PubMed  Google Scholar 

  27. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11:4955–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheng J, Chen J, Kang J, Yu Y, Yan N, Fu X-Z, et al. Octahedral Cu2O@co(OH)2 nanocages with hierarchical flake-like walls and yolk-shell structures for enhanced electrocatalytic activity. ChemCatChem. 2019;11:2520–5.

    CAS  Google Scholar 

  29. Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol. 2016;12:738–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dou BT, Yang JM, Yuan R, Xiang Y. Trimetallic hybrid Nanoflower-decorated MoS2 Nanosheet sensor for direct in situ monitoring of H2O2 secreted from live Cancer cells. Anal Chem. 2018;90:5945–50.

    CAS  PubMed  Google Scholar 

  31. Troll W, Wiesner R. The role of oxygen radicals as a possible mechanism of tumor promotion. Annu Rev Pharmacol Toxicol. 1985;25:509–28.

    CAS  PubMed  Google Scholar 

  32. Driessens N, Versteyhe S, Ghaddhab C, Burniat A, De Deken X, Van Sande J, et al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer. 2009;16:845–56.

    CAS  PubMed  Google Scholar 

  33. Guo HT, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    PubMed  PubMed Central  Google Scholar 

  34. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF Nanofilm. J Am Chem Soc. 2012;134:6524–16527.

    Google Scholar 

  37. Ma JP, Bai WS, Zheng JB. Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta. 2019;186:482.

    Google Scholar 

  38. Liu TF, Xiao BW, Xiang F, Tan JL, Chen Z, Zhang XR, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11:1–16.

    CAS  Google Scholar 

  39. Thakur B, Bernalte E, Smith JP, Linton PE, Sawant SN, Banks CE, Foster CW, The Mediatorless electroanalytical sensing of sulfide utilizing unmodified graphitic electrode materials. C. 2016;2:14.

  40. Peng C, Zhou SY, Zhang XM, Zeng TQ, Zhang W, Li HM, et al. One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sensor Actuat B-Chem. 2018;270:530–7.

    CAS  Google Scholar 

  41. Ramezani H, Azizi SN, Hosseini SR. NaY zeolite as a platform for preparation of ag nanoparticles arrays in order to construction of H2O2 sensor. Sensors Actuators B. 2017;248:571–9.

    CAS  Google Scholar 

  42. Gholami M, Koivisto B. A flexible and highly selective non-enzymatic H2O2 sensor based onsilver nanoparticles embedded into Nafion. Appl Surf Sci. 2019;467:112–8.

    Google Scholar 

  43. Jamal M, Hasan M, Mathewson A, Razeeb KM. Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire Array electrode. J Electrochem Soc. 2012;159:B825.

    CAS  Google Scholar 

  44. Tao Y, Chang Q, Liu QH, Yang GL, Guan HT, Chen G, et al. Highly sensitive nonenzymatic H2O2 sensor based on NiFe-layered double hydroxides nanosheets grown on Ni foam. Surf Interfaces. 2018;12:102–7.

    CAS  Google Scholar 

  45. Lopa NS, Rahman MM, Ahmed F, Sutradhar SC, Ryu T, Kim W. A base-stable metal-organicframework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochim Acta. 2018;274:49–56.

    CAS  Google Scholar 

  46. Cai JJ, Ding SL, Chen G, Sun YL, Xie Q. In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzymatic H2O2 sensor. Appl Surf Sci. 2018;456:302–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this project by the National Key R&D Program of China (2019YFC1606703), the Natural Science Foundation of Shaanxi Province in China (2020JM-429), and the National Science Foundation of China (31801653).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Sheng or Tianli Yue.

Ethics declarations

The authors declare that all experiments are in compliance with ethical standards.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, X., Arsalan, M., Ma, X. et al. A hybrid of ultrathin metal-organic framework sheet and ultrasmall copper nanoparticles for detection of hydrogen peroxide with enhanced activity. Anal Bioanal Chem 413, 839–851 (2021). https://doi.org/10.1007/s00216-020-03038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03038-0

Keywords

Navigation