Abstract
Sugar-enriched media are used to produce extracellular substances (ECS) by Lactobacillus plantarum WCSF1, with a focus on growing stages and carbon source substrates. Combination of size exclusion chromatography and ATR-FTIR spectroscopy provides physicochemical patterns of bulk ECS produced along culture growing time. Secreted biopolymers present polydisperse and high molecular weight distributions, with significant amounts of carbohydrates and proteins. Results, supported by a multivariate statistical analysis, enable to differentiate the macromolecular content of bacterial ECS along the growing stages regardless of the growing media, highlighting a higher production of proteinaceous materials compared to polysaccharides. At the end of the exponential phase, common exoproteins were present in all the tested sugar-enriched media such as transglycosylases between 20 and 35 kDa, a muropeptidase at 36.9 kDa and a cell wall hydrolase. Additionally, L. plantarum WCFS1 secretes ECS with a greater diversity of proteins, when growing in the sucrose-enriched media.

Graphical abstract




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Factories. 2012;11(1):122.
Sutherland IW. Bacterial exopolysaccharides. Adv Microb Physiol. 1972;8:143–213.
Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189(22):7945–7.
d’Abzac P, Bordas F, Joussein E, Hullebusch E, Lens PNL, Guibaud G. Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludges. Environ Sci Technol. 2010;44(1):412–8.
Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28(6):882–94.
Xu H, Cai H, Yu G, Jiang H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013;47(6):2005–14.
Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, et al. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis. 2014;72(3):143–60.
Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric. 2011;91(12):2284–91.
Ismail B, Nampoothiri KM. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol. 2010;192(12):1049–57.
De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23(2):153–77.
Benhouna IS, Heumann A, Rieu A, Guzzo J, Kihal M, Bettache G, et al. Exopolysaccharide produced by Weissella confusa: chemical characterisation, rheology and bioactivity. Int Dairy J. 2019;90:88–94.
Gänzle MG, Vermeulen N, Vogel RF. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 2007;24(2):128–38.
De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007;13(4):194–9.
Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr. 2016;56(9):1440–53.
Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Lett. 1990;87(1):113–30.
Zhou K, Zeng Y, Yang M, Chen S, He L, Ao X, et al. Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25. Carbohydr Polym. 2016;144:205–14.
Sasikumar K, Kozhummal Vaikkath D, Devendra L, Nampoothiri KM. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol. 2017;241:1152–6.
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol. 2015;6:834.
Plaza-Vinuesa L, Hernandez-Hernandez O, Moreno FJ, de las Rivas B, Muñoz R. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories. 2019;18(1):183.
Panwar D, Shubhashini A, Chaudhari SR, Prashanth KVH, Kapoor M. GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1,6 linked prebiotic α-galactooligosaccharide by transglycosylation. Int J Biol Macromol. 2020;144:334–42.
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci. 2003;100(4):1990.
Tallon R, Bressollier P, Urdaci MC. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol. 2003;154(10):705–12.
Remize F, Gaudin A, Kong Y, Guzzo J, Alexandre H, Krieger S, et al. Oenococcus oeni preference for peptides: qualitative and quantitative analysis of nitrogen assimilation. Arch Microbiol. 2006;185(6):459–69.
Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, et al. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol. 2010;76(9):2916.
Alves LA, Almeida e Silva JB, Giulietti M. Solubility of d-glucose in water and ethanol/water mixtures. J Chem Eng Data. 2007;52(6):2166–70.
Widyarani, Bowden NA, Kolfschoten RC, Sanders JPM, Bruins ME. Fractional precipitation of amino acids from agro-industrial residues using ethanol. Ind Eng Chem Res. 2016;55(27):7462–72.
Majara M, Mochaba FM, O'Connor-Cox ESC, Axcell BC, Alexander A. Yeast protein measurement using near infrared reflectance spectroscopy. J Inst Brew. 1998;104(3):143–6.
Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Cresman Iii CP. Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? J Sci Food Agric. 1997;73(1):39–45.
Goyon A, Beck A, Colas O, Sandra K, Guillarme D, Fekete S. Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins. J Chromatogr A. 2017;1498:80–9.
Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res. 2010;9(10):5076–92.
Morzel M, Neyraud E, Brignot H, Ducoroy P, Jeannin A, Lucchi G, et al. Multi-omics profiling reveals that eating difficulties developed consecutively to artificial nutrition in the neonatal period are associated to specific saliva composition. J Proteome. 2015;128:105–12.
Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5(13):3226–45.
Wang J, Zhao X, Tian Z, Yang Y, Yang Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr Polym. 2015;125:16–25.
Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 2013;54:270–5.
Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules. 2018;51:2(1):1–12.
Mital BK, Steinkraus KH. Utilization of oligosaccharides by lactic acid bacteria during fermentation of soy milk. J Food Sci. 1975;40(1):114–8.
Seo B-J, Bajpai V, Rather I, Park Y. Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total phenolic content, antioxidant and free radical scavenging efficacy. Indian J Pharm Educ Res. 2015;49(4):282–292.
Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym. 2014;102:351–9.
Jebsen C, Norici A, Wagner H, Palmucci M, Giordano M, Wilhelm C. FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant. 2012;146(4):427–38.
Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, et al. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol. 2015;64(2):1179–86.
Nichols PD, Michael Henson J, Guckert JB, Nivens DE, White DC. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteri-polymer mixtures and biofilms. J Microbiol Methods. 1985;4(2):79–94.
Siezen RJ, van Hylckama Vlieg JE. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact. 2011;10(Suppl 1):S3.
Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, et al. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol. 2012;194(1):195–6.
Boekhorst J, Wels M, Kleerebezem M, Siezen RJ. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology (Reading). 2006;152(Pt 11):3175–83.
Lu Z, Fleming HP, McFeeters RF. Differential glucose and fructose utilization during cucumber juice fermentation. J Food Sci. 2001;66(1):162–6.
Bissaro B, Monsan P, Fauré R, O'Donohue MJ. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J. 2015;467(1):17–35.
Crout DHG, Vic G. Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol. 1998;2(1):98–111.
Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol. 2009;17(3):158–62.
Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L, et al. Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Factories. 2009;8:14.
Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol. 2005;187(17):6128.
Sánchez B, González-Tejedo C, Ruas-Madiedo P, Urdaci MC, Margolles A. Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, Caco-2 cells, and mucin. Appl Environ Microbiol. 2011;77(3):1123–6.
Acknowledgments
The authors would like to thank the Divva Development Facility, IUVV Dijon, Agrosup Dijon, Univ. Bourgogne Franche-Comté, F-21000 Dijon France and Claire Lhomme (Université de Bourgogne, Dijon, France) for their technical assistance.
Funding
This work was supported by the Regional Council of Bourgogne Franche-Comté and the “Fonds Européen de Développement Régional (FEDER)” [CRB 2016-9201AAO048S01632] and the Ministère de lʼEnseignement supérieur, de la Recherche et de lʼInnovation, France.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Research involving human participants and/or animals
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 644 kb)
Rights and permissions
About this article
Cite this article
Elichiry-Ortiz, P., Maes, P., Weidmann, S. et al. Analytical combinations to evaluate the macromolecular composition of extracellular substances (ECS) from Lactobacillus plantarum cell culture media. Anal Bioanal Chem 413, 519–531 (2021). https://doi.org/10.1007/s00216-020-03022-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-020-03022-8


