Skip to main content

Advertisement

Log in

Analytical combinations to evaluate the macromolecular composition of extracellular substances (ECS) from Lactobacillus plantarum cell culture media

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sugar-enriched media are used to produce extracellular substances (ECS) by Lactobacillus plantarum WCSF1, with a focus on growing stages and carbon source substrates. Combination of size exclusion chromatography and ATR-FTIR spectroscopy provides physicochemical patterns of bulk ECS produced along culture growing time. Secreted biopolymers present polydisperse and high molecular weight distributions, with significant amounts of carbohydrates and proteins. Results, supported by a multivariate statistical analysis, enable to differentiate the macromolecular content of bacterial ECS along the growing stages regardless of the growing media, highlighting a higher production of proteinaceous materials compared to polysaccharides. At the end of the exponential phase, common exoproteins were present in all the tested sugar-enriched media such as transglycosylases between 20 and 35 kDa, a muropeptidase at 36.9 kDa and a cell wall hydrolase. Additionally, L. plantarum WCFS1 secretes ECS with a greater diversity of proteins, when growing in the sucrose-enriched media.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Factories. 2012;11(1):122.

    CAS  Google Scholar 

  2. Sutherland IW. Bacterial exopolysaccharides. Adv Microb Physiol. 1972;8:143–213.

    CAS  PubMed  Google Scholar 

  3. Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189(22):7945–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. d’Abzac P, Bordas F, Joussein E, Hullebusch E, Lens PNL, Guibaud G. Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludges. Environ Sci Technol. 2010;44(1):412–8.

    PubMed  Google Scholar 

  5. Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28(6):882–94.

    CAS  PubMed  Google Scholar 

  6. Xu H, Cai H, Yu G, Jiang H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013;47(6):2005–14.

    CAS  PubMed  Google Scholar 

  7. Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, et al. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis. 2014;72(3):143–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric. 2011;91(12):2284–91.

    CAS  PubMed  Google Scholar 

  9. Ismail B, Nampoothiri KM. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol. 2010;192(12):1049–57.

    CAS  PubMed  Google Scholar 

  10. De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23(2):153–77.

    PubMed  Google Scholar 

  11. Benhouna IS, Heumann A, Rieu A, Guzzo J, Kihal M, Bettache G, et al. Exopolysaccharide produced by Weissella confusa: chemical characterisation, rheology and bioactivity. Int Dairy J. 2019;90:88–94.

    CAS  Google Scholar 

  12. Gänzle MG, Vermeulen N, Vogel RF. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 2007;24(2):128–38.

    PubMed  Google Scholar 

  13. De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007;13(4):194–9.

    Google Scholar 

  14. Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr. 2016;56(9):1440–53.

    CAS  PubMed  Google Scholar 

  15. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Lett. 1990;87(1):113–30.

    CAS  Google Scholar 

  16. Zhou K, Zeng Y, Yang M, Chen S, He L, Ao X, et al. Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25. Carbohydr Polym. 2016;144:205–14.

    CAS  PubMed  Google Scholar 

  17. Sasikumar K, Kozhummal Vaikkath D, Devendra L, Nampoothiri KM. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol. 2017;241:1152–6.

    CAS  PubMed  Google Scholar 

  18. Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol. 2015;6:834.

    PubMed  PubMed Central  Google Scholar 

  19. Plaza-Vinuesa L, Hernandez-Hernandez O, Moreno FJ, de las Rivas B, Muñoz R. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories. 2019;18(1):183.

    PubMed  PubMed Central  Google Scholar 

  20. Panwar D, Shubhashini A, Chaudhari SR, Prashanth KVH, Kapoor M. GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1,6 linked prebiotic α-galactooligosaccharide by transglycosylation. Int J Biol Macromol. 2020;144:334–42.

    CAS  PubMed  Google Scholar 

  21. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci. 2003;100(4):1990.

    CAS  PubMed  Google Scholar 

  22. Tallon R, Bressollier P, Urdaci MC. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol. 2003;154(10):705–12.

    CAS  PubMed  Google Scholar 

  23. Remize F, Gaudin A, Kong Y, Guzzo J, Alexandre H, Krieger S, et al. Oenococcus oeni preference for peptides: qualitative and quantitative analysis of nitrogen assimilation. Arch Microbiol. 2006;185(6):459–69.

    CAS  PubMed  Google Scholar 

  24. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, et al. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol. 2010;76(9):2916.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alves LA, Almeida e Silva JB, Giulietti M. Solubility of d-glucose in water and ethanol/water mixtures. J Chem Eng Data. 2007;52(6):2166–70.

    CAS  Google Scholar 

  26. Widyarani, Bowden NA, Kolfschoten RC, Sanders JPM, Bruins ME. Fractional precipitation of amino acids from agro-industrial residues using ethanol. Ind Eng Chem Res. 2016;55(27):7462–72.

    CAS  Google Scholar 

  27. Majara M, Mochaba FM, O'Connor-Cox ESC, Axcell BC, Alexander A. Yeast protein measurement using near infrared reflectance spectroscopy. J Inst Brew. 1998;104(3):143–6.

    CAS  Google Scholar 

  28. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Cresman Iii CP. Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? J Sci Food Agric. 1997;73(1):39–45.

    CAS  Google Scholar 

  29. Goyon A, Beck A, Colas O, Sandra K, Guillarme D, Fekete S. Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins. J Chromatogr A. 2017;1498:80–9.

    CAS  PubMed  Google Scholar 

  30. Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res. 2010;9(10):5076–92.

    CAS  PubMed  Google Scholar 

  31. Morzel M, Neyraud E, Brignot H, Ducoroy P, Jeannin A, Lucchi G, et al. Multi-omics profiling reveals that eating difficulties developed consecutively to artificial nutrition in the neonatal period are associated to specific saliva composition. J Proteome. 2015;128:105–12.

    CAS  Google Scholar 

  32. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5(13):3226–45.

    CAS  PubMed  Google Scholar 

  33. Wang J, Zhao X, Tian Z, Yang Y, Yang Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr Polym. 2015;125:16–25.

    CAS  PubMed  Google Scholar 

  34. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 2013;54:270–5.

    PubMed  Google Scholar 

  35. Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules. 2018;51:2(1):1–12.

  36. Mital BK, Steinkraus KH. Utilization of oligosaccharides by lactic acid bacteria during fermentation of soy milk. J Food Sci. 1975;40(1):114–8.

    CAS  Google Scholar 

  37. Seo B-J, Bajpai V, Rather I, Park Y. Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total phenolic content, antioxidant and free radical scavenging efficacy. Indian J Pharm Educ Res. 2015;49(4):282–292.

  38. Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym. 2014;102:351–9.

    CAS  PubMed  Google Scholar 

  39. Jebsen C, Norici A, Wagner H, Palmucci M, Giordano M, Wilhelm C. FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant. 2012;146(4):427–38.

    CAS  PubMed  Google Scholar 

  40. Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, et al. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol. 2015;64(2):1179–86.

    CAS  Google Scholar 

  41. Nichols PD, Michael Henson J, Guckert JB, Nivens DE, White DC. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteri-polymer mixtures and biofilms. J Microbiol Methods. 1985;4(2):79–94.

    CAS  PubMed  Google Scholar 

  42. Siezen RJ, van Hylckama Vlieg JE. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact. 2011;10(Suppl 1):S3.

    PubMed  PubMed Central  Google Scholar 

  43. Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, et al. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol. 2012;194(1):195–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boekhorst J, Wels M, Kleerebezem M, Siezen RJ. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology (Reading). 2006;152(Pt 11):3175–83.

    CAS  Google Scholar 

  45. Lu Z, Fleming HP, McFeeters RF. Differential glucose and fructose utilization during cucumber juice fermentation. J Food Sci. 2001;66(1):162–6.

    CAS  Google Scholar 

  46. Bissaro B, Monsan P, Fauré R, O'Donohue MJ. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J. 2015;467(1):17–35.

    CAS  PubMed  Google Scholar 

  47. Crout DHG, Vic G. Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol. 1998;2(1):98–111.

    CAS  PubMed  Google Scholar 

  48. Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol. 2009;17(3):158–62.

    PubMed  Google Scholar 

  49. Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L, et al. Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Factories. 2009;8:14.

    Google Scholar 

  50. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol. 2005;187(17):6128.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sánchez B, González-Tejedo C, Ruas-Madiedo P, Urdaci MC, Margolles A. Lactobacillus plantarum extracellular chitin-binding protein and its role in the interaction between chitin, Caco-2 cells, and mucin. Appl Environ Microbiol. 2011;77(3):1123–6.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Divva Development Facility, IUVV Dijon, Agrosup Dijon, Univ. Bourgogne Franche-Comté, F-21000 Dijon France and Claire Lhomme (Université de Bourgogne, Dijon, France) for their technical assistance.

Funding

This work was supported by the Regional Council of Bourgogne Franche-Comté and the “Fonds Européen de Développement Régional (FEDER)” [CRB 2016-9201AAO048S01632] and the Ministère de lʼEnseignement supérieur, de la Recherche et de lʼInnovation, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Coelho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elichiry-Ortiz, P., Maes, P., Weidmann, S. et al. Analytical combinations to evaluate the macromolecular composition of extracellular substances (ECS) from Lactobacillus plantarum cell culture media. Anal Bioanal Chem 413, 519–531 (2021). https://doi.org/10.1007/s00216-020-03022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03022-8

Keywords

Profiles

  1. Christian Coelho