Skip to main content
Log in

Gelatin-coated indium tin oxide slides improve human cartilage-bone tissue adherence and N-glycan signal intensity for mass spectrometry imaging

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been successfully used to elucidate the relative abundance and spatial mapping of analytes in situ. Currently, sample preparation workflows for soft formalin-fixed paraffin-embedded (FFPE) tissues, such as brain, liver, kidney, and heart, have been successfully developed. However, hard tissues, such as cartilage-bone, tooth, and whole mouse body, have resulted in the loss of morphology or tissue during the heat-induced epitope retrieval (HIER) step on commercially available conductive indium tin oxide (ITO) slides. Therefore, we have successfully developed a novel and cost-effective sample preparation workflow in which commercial conductive ITO slides are pre-coated with gelatin and chromium potassium sulfate dodecahydrate to improve the adherence of FFPE human osteoarthritic cartilage-bone tissue sections. Gelatin-coated ITO slides also resulted in overall higher N-glycan signal intensity for not only FFPE osteoarthritic cartilage-bone tissue but also for FFPE hard-boiled egg white used as a quality control to assess the quality of sample preparation and MALDI-MSI acquisition. In summary, we present a novel straightforward workflow to improve slide adherence and morphological preservation of FFPE cartilage-bone tissue sections during HIER while improving the signal intensity of N-glycans spatially mapped from the same tissue sections by MALDI-MSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CACH:

α-Cyano-4-hydroxycinnamic acid

EDTA:

Ethylenediaminetetraacetic acid

FF:

Fresh-frozen

FFPE:

Formalin-fixed paraffin-embedded

HIER:

Heat-induced epitope retrieval

ITO:

Indium tin oxide

LC-ESI MS/MS:

Liquid chromatography electrospray ionisation mass spectrometry

MALDI-MSI:

Matrix-assisted laser desorption/ionisation mass spectrometry imaging

RMS:

Root mean square

References

  1. Hermann J, Noels H, Theelen W, Lellig M, Orth-Alampour S, Boor P, et al. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal Bioanal Chem. 2020;412(6):1263–75.

    Article  CAS  Google Scholar 

  2. Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. Biochim Biophys Acta, Proteins Proteomics. 2017;1865(7):784–94.

    Article  CAS  Google Scholar 

  3. Cillero-Pastor B, Eijkel GB, Kiss A, Blanco FJ, Heeren RMA. Matrix-assisted laser desorption ionization–imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheumatol. 2013;65(3):710–20.

    Article  CAS  Google Scholar 

  4. Kriegsmann M, Seeley EH, Schwarting A, Kriegsmann J, Otto M, Thabe H, et al. MALDI MS imaging as a powerful tool for investigating synovial tissue. Scand J Rheumatol. 2012;41(4):305–9.

    Article  CAS  Google Scholar 

  5. Patel E. Fresh frozen versus formalin-fixed paraffin embedded for mass spectrometry imaging. Methods Mol Biol. 2017;1618:7–14.

    Article  CAS  Google Scholar 

  6. Caldwell RL, Caprioli RM. Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics. 2005;4(4):394–401.

    Article  CAS  Google Scholar 

  7. De-Sio G, Smith AJ, Galli M, Garancini M, Chinello C, Bono F, et al. A MALDI-mass spectrometry imaging method applicable to different formalin-fixed paraffin-embedded human tissues. Mol BioSyst. 2015;11(6):1507–14.

    Article  CAS  Google Scholar 

  8. Briggs MT, Kuliwaba JS, Muratovic D, Everest-Dass AV, Packer NH, Findlay DM, et al. MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics. 2016;16(11–12):1736–41.

    Article  CAS  Google Scholar 

  9. Urita A, Matsuhashi T, Onodera T, Nakagawa H, Hato M, Amano M, et al. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. Arthritis Rheumatol. 2011;63(11):3428–38.

    Article  CAS  Google Scholar 

  10. Briggs M, Ho Y, Kaur G, Oehler M, Everest-Dass A, Packer N, et al. N-Glycan matrix-assisted laser desorption/ionization mass spectrometry imaging protocol for formalin-fixed paraffin-embedded tissues. Rapid Commun Mass Spectrom. 2017;31(10):825–41.

    Article  CAS  Google Scholar 

  11. Gustafsson OJ, Eddes JS, Meding S, McColl SR, Oehler MK, Hoffmann P. Matrix-assisted laser desorption/ionization imaging protocol for in situ characterization of tryptic peptide identity and distribution in formalin-fixed tissue. Rapid Commun Mass Spectrom. 2013;27(6):655–70.

    Article  CAS  Google Scholar 

  12. Wang C, Cheng J, Huang C, Hsu S, Lee F, Yip H. Medial tibial subchondral bone is the key target for extracorporeal shockwave therapy in early osteoarthritis of the knee. Am J Transl Res. 2017;9(4):1720–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorat R, Joshi U, Krishnamoorthy N, Jambhekar N. Simultaneous fixation and decalcification protocol for bone specimens. J Histotechnol. 2011;34(4):162–4.

    Article  CAS  Google Scholar 

  14. Gustafsson O, Briggs M, Condina M, Winderbaum L, Pelzing M, McColl S, et al. MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal Bioanal Chem. 2015;407(8):2127–39.

    Article  CAS  Google Scholar 

  15. Condina MR, Mittal P, Briggs MT, Oehler MK, Klingler-Hoffmann M, Hoffmann P. Egg white as a quality control in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Anal Chem. 2019;91(23):14846–53.

    Article  CAS  Google Scholar 

  16. Harvey DJ, Wing DR, Küster B, Wilson IB. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J Am Soc Mass Spectrom. 2000;11(6):564–71.

    Article  CAS  Google Scholar 

  17. Powers T, Jones E, Betesh L, Romano P, Gao P, Copland J, et al. Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem. 2013;85(20):9799–806.

    Article  CAS  Google Scholar 

  18. Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, et al. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc. 2016;11(8):1428–43.

    Article  Google Scholar 

  19. K-R V, Jones D, Udupa V. A simple and effective heat induced antigen retrieval method. MethodsX. 2016;3:315–9.

    Article  Google Scholar 

  20. Fowler C, O’Leary T, Mason J. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics. 2013;10(4):389–400.

    Article  CAS  Google Scholar 

  21. Phillips P, Khumalo N, Adeola H. The effect of antigen retrieval buffers on MALDI mass spectrometry imaging of peptide profiles in skin FFPE tissue. J Interdiscip Hist. 2018;6(2):26–32.

    Google Scholar 

  22. Vollert CT, Moree WJ, Gregory S, Bark SJ, Eriksen JL. Formaldehyde scavengers function as novel antigen retrieval agents. Sci Rep. 2015;5:17322.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Bioplatforms Australia, the University of South Australia, and the State and Federal Governments, which co-fund the NCRIS-enabled Mass Spectrometry and Proteomics facility at the University of South Australia. The authors also wish to thank Dr. Dzenita Muratovic for providing a human tibial plateau specimen, and the University of South Australia for Postgraduate Award and Research Training Program domestic fee offset scholarship.

Funding

This research was funded by Dr. Malcolm Cochran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, Y-R. Lee, MT. Briggs, JS. Kuliwaba, PH. Anderson, MR. Condina, and P. Hoffmann; methodology, Y-R. Lee and MT. Briggs; data analysis, Y-R. Lee and MT. Briggs; writing—original draft preparation, Y-R. Lee; writing—review and editing, MT. Briggs, JS. Kuliwaba, PH. Anderson, MR. Condina, and P. Hoffmann; supervision, MT. Briggs, JS. Kuliwaba, PH. Anderson, and P. Hoffman; funding acquisition, PH. Anderson. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Peter Hoffmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Mass Spectrometry Imaging 2.0 with guest editors Shane R. Ellis and Tiffany Porta Siegel.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YR., Briggs, M.T., Kuliwaba, J.S. et al. Gelatin-coated indium tin oxide slides improve human cartilage-bone tissue adherence and N-glycan signal intensity for mass spectrometry imaging. Anal Bioanal Chem 413, 2675–2682 (2021). https://doi.org/10.1007/s00216-020-02986-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02986-x

Keywords

Navigation