TOGA feature selection and the prediction of mechanical properties of paper from the Raman spectra of unrefined pulp

Abstract

Process-monitoring laboratories in the pulp and paper industry generally use a combination of wet chemical analyses and physical measurements to certify the fitness of a production pulp for a specific end-use. These laboratory tests require time and the effort of trained personnel, limiting their utility for real-time process control. Here we show that Raman probes of unrefined cellulosic pulps, well-suited to the online measurement of in-process materials, can predict the quality attributes of manufactured papers. The accuracy of prediction improves when the covariance is modelled in a reduced measurement space selected by a data-driven, feature-selection technique referred to as a Template Oriented Genetic Algorithm (TOGA). TOGA, combined with discrete wavelet transform (DWT), isolates functional-group features that correlate best with mechanical properties paper derived from refined pulp. Paper makers refine market pulps to build sheet strength using a beating process that decreases freeness as it increases fibre-fibre bonding. Methods demonstrated here predict manufactured sheet properties obtainable after any specified degree of refining from the Raman spectrum of an unrefined pulp. This analysis capacity will enable both vendors of market pulp and makers of sheet paper to specify in advance the amount of beating required to produce a desired product, thereby saving cost and conserving resources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Joutsimo O, Wathén R, Tamminen T. Effects of fiber deformations on pulp sheet properties and fiber strength. Paper Timber. 2005;87.

  2. 2.

    Tavassoli N, Tsai W, Bicho P, Grant E. Multivariate classification of pulp NIR spectra for end-product properties using discrete wavelet transform with orthogonal signal correction. Anal Methods 2014;6(22): 8906–8914.

    CAS  Article  Google Scholar 

  3. 3.

    Alarousu E, Krehut L, Prykari T, Myllyla R. Study on the use of optical coherence tomography in measurements of paper properties. Meas Sci Technol 2005;16:1131–1137.

    CAS  Article  Google Scholar 

  4. 4.

    Fardim P, Ferreira MMC, Duran N. Determination of mechanical and optical properties of eucalyptus kraft pulp by nir spectrometry and multivariate calibration. J Wood Chem Technol 2005;25:267–279.

    CAS  Article  Google Scholar 

  5. 5.

    Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005;44:3358–93.

  6. 6.

    Scheller HV, Ulvskov P. Hemicelluloses. Ann Rev Plant Biol 2010;61:263–269.

    CAS  Article  Google Scholar 

  7. 7.

    Spiegelberg HL. The effect of hemicelluloses on the mechanical properties of individual pulp fibers. Ph.D. thesis. Lawrence University; 1966.

  8. 8.

    Tavast D, Mansoor ZA, Brännvall E. Xylan from agro waste as a strength enhancing chemical in kraft pulping of softwood. Ind Eng Chem Res 2014;53:9738–9742.

    CAS  Article  Google Scholar 

  9. 9.

    Sjöholm E, Gustafsson K, Norman E, Reitberger T, Colmsjö A. Fibre strength in relation to molecular weight distribution of hardwood kraft pulp: Degradation by gamma irradiation, oxygen/alkali or alkali. Nord Pulp Pap Res J 2000;15:326–332.

    Article  Google Scholar 

  10. 10.

    Sjostrom E. Wood chemistry: Fundamentals and applications. Academic Press; 1993.

  11. 11.

    Kang T, Paulapuro H. Effect of external fibrillation on paperstrength. Pulp Paper Canada 2006; 107:51–54.

    CAS  Google Scholar 

  12. 12.

    Walczak B, Massart D. Wavelets ó something for analytical chemistry? TrAC Trends Anal Chem 1997;16:451–463.

    CAS  Article  Google Scholar 

  13. 13.

    Espy HH. The mechanism of wet-strength development in paper - a review. TAPPI J. 1995:90–99.

  14. 14.

    Wiley JH, Atalla RH. Band assignments in the raman spectra of celluloses. Carbohydr Res 1987;160:113–129.

    CAS  Article  Google Scholar 

  15. 15.

    Workman JJ. Infrared and Raman spectroscopy in paper and pulp analysis. Appl Spectrosc Rev 2001;36(2-3):139–168.

    CAS  Article  Google Scholar 

  16. 16.

    Fischer S, Schenzel K, Fischer K, Diepenbrock W. Applications of FT raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials. Macromol Symp 2005;223(1):41–56.

    CAS  Article  Google Scholar 

  17. 17.

    Wojciak A, Kasprzyk H, Khmelinskii I, Krawczyk A, Oliveira A, Ferreira L, Weselucha-Birczynska A, Sikorski M. Direct characterization of hydrogen peroxide bleached thermomechanical pulp using spectroscopic methods. J Phys Chem A 2007;111:10530–10536.

    CAS  Article  Google Scholar 

  18. 18.

    Agarwal UP. Characterization of Lignocellulose Materials, chap. Raman Spectroscopic Characterization of Wood and Pulp Fibers. Oxford: Blackwell Publishing; 2008, pp. 17–35.

    Google Scholar 

  19. 19.

    Chen D, Trung T, Jang HF, Francis DW, Grant E. The prospect of raman spectroscopy as a gauge for process analysis / process control in pulp and paper production. Proc.technical association of the pulp and paper industry (TAPPI) pulping, engineering, environmental, recycling and sustainability (PEERS) conference; 2010.

  20. 20.

    Chen D, Trung T, Jang HF, Francis DW, Grant E. High-throughput prediction of physical and mechanical properties of paper from raman chemometric analysis of pulp fibres. Can J For Res 2011;41: 2100–2113.

    Article  Google Scholar 

  21. 21.

    Hawkins DM. The problem of overfitting. Journal of chemical information and computer sciences 2004;44(1):1–12.

    CAS  Article  Google Scholar 

  22. 22.

    Balabina RM. S.v.s.: Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 2011;29:63–72.

    Article  Google Scholar 

  23. 23.

    Pasti L, Walczak B, Massart D, Reschiglian P. Optimization of signal denoising in discrete wavelet transform. Chemometrics and intelligent laboratory systems 1999;48(1):21–34.

    CAS  Article  Google Scholar 

  24. 24.

    Alsberg BK, Woodward AM, Kell DB. An introduction to wavelet transforms for chemometricians: a time-frequency approach. Chemometrics and intelligent laboratory systems 1997;37(2):215–239.

    CAS  Article  Google Scholar 

  25. 25.

    Jensen A, la Cour-Harbo A. 2001. Ripples in mathematics: the discrete wavelet transform Springer Science & Business Media.

  26. 26.

    Chen D, Chen Z, Grant E. Adaptive wavelet transform suppresses background and noise for quantitative analysis by raman spectrometry. Anal Bioanal Chem 2011;400:625–634.

    CAS  Article  Google Scholar 

  27. 27.

    Tavassoli N, Chen Z, Bain A, Melo L, Chen D, Grant E. Template-oriented genetic algorithm feature selection of analyte wavelets in the raman spectrum of a complex mixture. Anal Chem 2014;85: 10591–10599.

    Article  Google Scholar 

  28. 28.

    Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose i from synchrotron x-ray and neutron fiber diffraction. J Amer Chem Soc. 2002;124(31):9074–9082. PMID: 12149011.

  29. 29.

    Schenzel K, Fischer S, Brendler E. New method for determining the degree of cellulose i crystallinity by means of FT raman spectroscopy. Cellulose 2005;12(3):223–231.

    CAS  Article  Google Scholar 

  30. 30.

    Agarwal UP. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Molecules 2019;24(9):1659.

    Article  Google Scholar 

  31. 31.

    Agarwal UP, Ralph SA. FT-raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea Mariana):. Appl Spectrosc 2016;51(11): 1648–1655.

    Article  Google Scholar 

  32. 32.

    Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM. Basic effects of pulp refining on fiber properties—a review. Carbohyd Polym 2015;115:785–803.

    CAS  Article  Google Scholar 

  33. 33.

    Chen Z, Hu TQ, Jang HF, Grant E. Multivariate analysis of hemicelluloses in bleached kraft pulp using infrared spectroscopy. Applied Spectroscopy. 2016.

  34. 34.

    Wistara N, Young RA. Properties and treatments of pulps from recycled paper. part i. physical and chemical properties of pulps. Cellulose 1999;6(4):291–324.

    CAS  Article  Google Scholar 

  35. 35.

    Iwamoto S, Abe K, Yano H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules. 2008;9(3):1022–1026. PMID: 18247566.

  36. 36.

    Borch J, Vol. 1. Handbook of Physical Testing of Paper. Boca Raton: CRC Press; 2001.

    Google Scholar 

  37. 37.

    Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM. Basic effects of pulp refining on fiber properties—a review. Carbohyd Polym 2015;115:785–803.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC CRDPJ 494643-16) and Canfor Pulp Innovation for joining in a Collaborative Research and Development grant which provided support for this work. We also gratefully acknowledge equipment support from the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward Grant.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author contributions

Conceptualization, P.B., E.G.; methodology, software, N.T.; sample preparation, P.B., N.T.; measurements, N.T.; writing, review and editing, N.T., Z.P., E.G.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, N., Poursorkh, Z., Bicho, P. et al. TOGA feature selection and the prediction of mechanical properties of paper from the Raman spectra of unrefined pulp. Anal Bioanal Chem 412, 8401–8415 (2020). https://doi.org/10.1007/s00216-020-02978-x

Download citation

Keywords

  • Biomaterials
  • Chemometrics/statistics
  • IR spectroscopy/Raman spectroscopy
  • Process analysis
  • Quality assurance/control