Skip to main content
Log in

Development of fibrin hydrogel–based in vitro bioassay system for assessment of skin permeability to and pro-inflammatory activity mediated by zinc ion released from nanoparticles

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are promising products in industry and medicine due to their unique physicochemical properties. In particular, zinc oxide (ZnO) NPs are extensively incorporated into sunscreens to protect the skin from exposure to ultraviolet radiation. However, there are several health concerns about skin penetration and the resultant toxicity. As methodologies for evaluating NP toxicity are under development, it is difficult to fully assess the toxicity of ZnO NPs toward humans. In this study, we developed a platform to simultaneously detect skin permeability to and pro-inflammatory activity mediated by zinc ion released from NPs. First, we generated a stable reporter cell line expressing green fluorescent protein (GFP) under the control of interleukin-8 (IL-8) promoter activity. The expression levels of GFP induced by zinc reflected the endogenous IL-8 expression levels and the pro-inflammatory responses. Next, we found that fibrin hydrogel can reproduce permeability to zinc ion of a human skin equivalent model and is therefore a promising material to assess skin permeability to zinc ion. Then, we constructed a fibrin hydrogel–based in vitro bioassay system for the simultaneous detection of skin permeability to and pro-inflammatory activity mediated by zinc ion released from NPs by using a stable reporter cell line and a fibrin hydrogel layer. This bioassay system is a promising in vitro permeation test due to its technical simplicity and good predictability. Overall, we believe that our bioassay system can be widely used in the cosmetics and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

HSEM:

Human skin equivalent model

ICP-OES:

Inductively coupled plasma optical emission spectrometer

IL-8:

Interleukin-8

LDH:

Lactate dehydrogenase

NF-κB:

Nuclear factor kappa B

NP:

Nanoparticle

OECD:

Organisation for Economic Cooperation and Development

PBS:

Phosphate-buffered saline

SC:

Stratum corneum

SCCS:

Scientific Committee on Consumer Safety

TiO2 :

Titanium dioxide

TNF-α:

Tumor necrosis factor alpha

UV:

Ultraviolet

ZnO:

Zinc oxide

ZnO-Si:

Silica-coated zinc oxide

References

  1. ISO. ISO/TS 80004-2:2015, Nanotechnologies – vocabulary. Part 2: nano-objects. 2015.

  2. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    PubMed  PubMed Central  Google Scholar 

  3. Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011;4:95–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nel A, Xia T, Mädler L, Lin N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    CAS  PubMed  Google Scholar 

  5. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interf Sci. 2017;249:37–52.

    Google Scholar 

  6. Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    CAS  PubMed  Google Scholar 

  7. Babin K, Antoine F, Goncalves DM, Girard D. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol Lett. 2013;221:57–63.

    CAS  PubMed  Google Scholar 

  8. Roy R, Kumar S, Verna AK, Sharma A, Chaudhari BP, Tripathi A, et al. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 2014;26:159–72.

    CAS  PubMed  Google Scholar 

  9. Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8. Toxicol Lett. 2016;259:11–20.

    CAS  PubMed  Google Scholar 

  10. Hsiao IL, Huang Y. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409:1219–28.

    CAS  PubMed  Google Scholar 

  11. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009;20:115101.

    PubMed  Google Scholar 

  12. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, et al. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol in Vitro. 2011;25:657–63.

    CAS  PubMed  Google Scholar 

  13. Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, et al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact. 2012;198:29–37.

    CAS  PubMed  Google Scholar 

  14. SCCS. Opinion on zinc oxide (nano form). SCCS/1489/12. 2012.

  15. De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics. 2017;5:29.

    PubMed Central  Google Scholar 

  16. Gamer AD, Leibolt E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol in Vitro. 2006;20:301–7.

    CAS  PubMed  Google Scholar 

  17. Cross SE, Innes B, Roberts M, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20:148–54.

    CAS  PubMed  Google Scholar 

  18. Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol. 2009;22:266–75.

    CAS  PubMed  Google Scholar 

  19. Szikszai Z, Kertész Z, Bodnár E, Majora I, Borbíróc I, Kissa AZ, et al. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin. Nucl Instrum Meth B. 2010;268:2160–3.

    CAS  Google Scholar 

  20. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011;123:264–80.

    CAS  PubMed  Google Scholar 

  21. Detoni CB, Coradini K, Back P, Oliveira CM, Andrade DF, Beck RC, et al. Penetration, photo-reactivity and photoprotective properties of nanosized ZnO. Photochem Photobiol Sci. 2014;13:1253–60.

    CAS  PubMed  Google Scholar 

  22. Ryu HJ, Seo MY, Jung SK, Maeng EH, Lee SY, Jang DH, et al. Zinc oxide nanoparticles: a 90-day repeated-dose dermal toxicity study in rats. Int J Nanomed. 2014;9:137–44.

    Google Scholar 

  23. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 2010;118:140–9.

    CAS  PubMed  Google Scholar 

  24. Gulson B, Wong H, Korsch M, Gomez L, Casey P, McCall M, et al. Comparison of dermal absorption of zinc from different sunscreen formulation and differing UV exposure based on stable isotope tracing. Sci Total Environ. 2012;420:313–8.

    CAS  PubMed  Google Scholar 

  25. Osmond-McLeod MJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology. 2014;8:72–84.

    CAS  PubMed  Google Scholar 

  26. Leite-Silva VR, Le Lamer M, Sanchez WY, Liu DC, Sanchez WH, Morrow I, et al. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm. 2013;84:297–308.

    CAS  PubMed  Google Scholar 

  27. OECD. OECD test guideline for testing of chemicals. Test no. 428: dermal delivery and percutaneous absorption: in vitro method. 2004.

  28. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100:59–74.

    CAS  PubMed  Google Scholar 

  29. Magnusson BM, Walters KA, Roberts MS. Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev. 2001;50:205–27.

    CAS  PubMed  Google Scholar 

  30. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt. 2008;13:064031.

    PubMed  Google Scholar 

  31. Yun YE, Jung YJ, Choi YJ, Choi JS, Cho YW. Artificial skin models for animal-free testing. J Pharm Investig. 2018;48:215–23.

    CAS  Google Scholar 

  32. Flaten GE, Palac Z, Engesland A, Filipović-Grčić J, Vanić Ž, Škalko-Basnet N. In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci. 2015;75:10–24.

    CAS  PubMed  Google Scholar 

  33. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;31:6221–7.

    Google Scholar 

  34. De Larco JE, Wuertz BR, Yee D, Rickert BL, Furcht LT. Atypical methylation of interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc Natl Acad Sci U S A. 2003;100:13988–93.

    PubMed  PubMed Central  Google Scholar 

  35. Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, et al. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics. 2012;4:350–60.

    CAS  PubMed  Google Scholar 

  36. Tabei Y, Sugino S, Eguchi K, Tajika M, Abe H, Nakajima Y, et al. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages. Biochem Biophys Res Commun. 2017;490:499–505.

    CAS  PubMed  Google Scholar 

  37. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13:405–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou X, Liu S, Wang M, Wiraja C, Huang W, Chan P, et al. Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS Technol. 2017;22:447–53.

    PubMed  Google Scholar 

  39. Emri E, Miko E, Bai P, Boros G, Nagy G, Rózsa D, et al. Effects of non-toxic zinc exposure on human epidermal keratinocytes. Metallomics. 2015;7:499–507.

    CAS  PubMed  Google Scholar 

  40. Kim YM, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM. Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Phys Lung Cell Mol Phys. 2006;290:L1028–35.

    CAS  Google Scholar 

  41. Saptarshi SR, Feltis BN, Wright PF, Lopata AL. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J Nanobiotechnol. 2015;13:6.

    Google Scholar 

  42. OECD. OECD test guideline for testing of chemicals. Test no. 442E: in vitro skin sensitization assays addressing the key event on activation of dendritic cells on the adverse outcome pathway for skin sensitization. 2018.

  43. Takahashi T, Kimura Y, Saito R, Nakajima Y, Ohmiya Y, Yamasaki K, et al. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci. 2011;124:359–69.

    CAS  PubMed  Google Scholar 

  44. Kimura Y, Fujimura C, Ito Y, Takahashi T, Nakajima Y, Ohmiya Y, et al. Optimization of the IL-8 Luc assay as an in vitro test for skin sensitization. Toxicol In Vitro. 2015;29:1816–30.

    CAS  PubMed  Google Scholar 

  45. Daunert S, Barrett G, Felciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev. 2000;100:2705–38.

    CAS  PubMed  Google Scholar 

  46. Nakajima Y, Ohmiya Y. Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert Opin Drug Discov. 2010;5:835–49.

    CAS  PubMed  Google Scholar 

  47. Tabei Y, Murotomi K, Umeno A, Horie M, Tsujino Y, Masutani B, et al. Antioxidant properties of 5-hydroxy-4-phenyl-butenolide via activation of Nrf2/ARE signaling pathway. Food Chem Toxicol. 2017;107:129–37.

    CAS  PubMed  Google Scholar 

  48. Stoehr LC, Endes C, Radauer-Preiml I, Boyles MS, Casals E, Balog S, et al. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Part Fibre Toxicol. 2015;12:29.

    PubMed  PubMed Central  Google Scholar 

  49. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11:372–7.

    CAS  PubMed  Google Scholar 

  50. Jeong SH, Kim JH, Yi SM, Lee JP, Kim JH, Sohn KH, et al. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun. 2010;394:612–5.

    CAS  PubMed  Google Scholar 

  51. Lee O, Lee SH, Jeong SH, Kim J, Ryu HJ, Oh C, et al. A quantitative study of nanoparticle skin penetration with interactive segmentation. Med Biol Eng Comput. 2016;54:1469–79.

    PubMed  Google Scholar 

  52. Ramasamy M, Das M, An SS, Yi DK. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells. Int J Nanomed. 2014;9:3707–18.

    CAS  Google Scholar 

  53. Wu W, Samet JM, Peden DB, Bromberg PA. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ Health Perspect. 2010;118:982–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Holmes AM, Song Z, Moghimi HR, Roberts MS. Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations. ACS Nano. 2016;10:1810–9.

    CAS  PubMed  Google Scholar 

  55. Mohammed YH, Holmes A, Haridass IN, Sanchez WY, Studier H, Grice JE, et al. Support for the safe use of zinc oxide nanoparticle sunscreens: lack of skin penetration or cellular toxicity after repeated application in volunteers. J Invest Dermatol. 2019;139:308–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank S. Sugino and A. Tada of AIST for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Tabei.

Ethics declarations

Conflict of interest

W. Lin, S. Shiomoto, and T. Nakayama are employees of the sponsor of this study. However, this did not influence the objectivity of the study. The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabei, Y., Lin, W., Shiomoto, S. et al. Development of fibrin hydrogel–based in vitro bioassay system for assessment of skin permeability to and pro-inflammatory activity mediated by zinc ion released from nanoparticles. Anal Bioanal Chem 412, 8269–8282 (2020). https://doi.org/10.1007/s00216-020-02970-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02970-5

Keywords

Navigation