Skip to main content

Nanoelectrochemical quantification of single-cell metabolism

Abstract

At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday’s Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Salamifar SE, Lai RY. Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells. Anal Chem. 2013;85(20):9417–21.

    Article  PubMed  CAS  Google Scholar 

  2. Zhen XT, Hu W, Wang H, Yang H, Wei Z, Chang ML. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens Bioelectron. 2011;26(11):4484–90.

    Article  CAS  Google Scholar 

  3. Li Y, Hu KK, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J Am Chem Soc. 2017;139(37):13055–62.

    Article  PubMed  CAS  Google Scholar 

  4. Ding S, Li M, Gong H, Zhu Q, Shi G, Zhu A. Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Anal Chem. 2020;92(3):2543–9.

    Article  PubMed  CAS  Google Scholar 

  5. Butterfield AD, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med. 2001;7(12):548–54.

    Article  PubMed  CAS  Google Scholar 

  6. Tang Y, Yang X, Zhang X, Wu W, Zhang F, Jiang H, et al. Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem Sci. 2020;11(3):778–85.

    Article  CAS  Google Scholar 

  7. Carli M, Evenden J, Robbins T. Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature. 1985;313:679–82.

    Article  PubMed  CAS  Google Scholar 

  8. Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A, Wallace E, et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci U S A. 1993;90(24):11965–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50:14.

    Article  CAS  Google Scholar 

  10. Marx V. A dream of single-cell proteomics. Nat Methods. 2019;16:809–12.

    Article  PubMed  CAS  Google Scholar 

  11. Ali A, Abouleila Y, Shimizu Y, Hiyama E, Emara S, Mashaghi A, et al. Single-cell metabolomics by mass spectrometry: advances, challenges, and future applications. TrAC Trends Anal Chem. 2019;120:11.

    Google Scholar 

  12. Yin L, Zhang Z, Liu YZ, Gao Y, Gu JK. Recent advances in single-cell analysis by mass spectrometry. Analyst. 2019;144(3):824–45.

    Article  PubMed  CAS  Google Scholar 

  13. Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature. 2011;475(7356):308–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, et al. Biosensor reveals multiple sources for mitochondrial NAD(+). Science. 2016;352(6292):1474–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Robertson JB, Davis CR, Johnson CH. Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A. 2013;110(52):21130–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dickinson AJ, Armistead PM, Allbritton NL. Automated capillary electrophoresis system for fast single-cell analysis. Anal Chem. 2013;85(9):4797–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Machado DJ, Montesinos MS, Borges R. Good practices in single-cell amperometry. Methods Mol Biol. 2008;440:297–313.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts JG, Mitchel EC, Dunaway LE, McCarty GS, Sombers LA. Carbon-fiber nanoelectrodes for real-time discrimination of vesicle cargo in the native cellular environment. ACS Nano. 2020;14(3):2917–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li X, Mohammdi AS, Ewing AG. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J Electroanal Chem. 2016;781:30–5.

    Article  CAS  Google Scholar 

  20. Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal Chem. 1998;70(15):3123–30.

    Article  PubMed  CAS  Google Scholar 

  21. Lin Y, Trouillon R, Svensson MI, Keighron JD, Cans A, Ewing AG. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. Anal Chem. 2012;84(6):2949–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Trouillon R, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol. 2014;9(3):812–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang J, Ewing AG. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes. Analyst. 2014;139(13):3290–5.

    Article  PubMed  CAS  Google Scholar 

  24. Taleat Z, Larsson A, Ewing AG. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells. CS Chem Neurosci. 2019;10(4):2060–9.

    Article  CAS  Google Scholar 

  25. Zhou J, Jiang D, Chen H. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis. Sci China Chem. 2017;60:1277–84.

    Article  CAS  Google Scholar 

  26. Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. Single synaptic observation of cholinergic neurotransmission on living neurons: concentration and dynamics. J Am Chem Soc. 2018;140(25):7764–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV. Nanoelectrochemistry of mammalian cells. Proc Natl Acad Sci U S A. 2008;105(2):443–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem. 2020.

  29. Wang Y, Feng H, Zhang H, Chen Y, Huang W, Zhang J, et al. Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst. 2020;145(4):1294–301.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X, Oleinick A, Jiang H, Liao Q, Qiu Q, Svir I, et al. Electrochemical monitoring of ROS/RNS homeostasis within individual phagolysosomes inside single macrophages. Angew Chem Int Ed. 2019;58(23):7753–6.

    Article  CAS  Google Scholar 

  31. Zhang X, Qui Q, Jiang H, Zhang F, Lui Y, Amatore C, et al. Real-time intracellular measurements of ROS and RNS in living cells with single core–shell nanowire electrodes. Angew Chem Int Ed. 2017;56(42):12997–3000.

    Article  CAS  Google Scholar 

  32. Erofeev A, Gorelkin P, Garanina A, Alova A, Efremova M, Vorobyeva N, et al. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci Rep. 2018;8:7462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vaneev NA, Gorelkin PV, Garanina AS, Lopatukhina HV, Vodopyanov SS, Alova AV, et al. In vitro and in vivo electrochemical measurement of reactive oxygen species after treatment with anticancer drugs. Anal Chem. 2020;92(12):8010–4.

    Article  PubMed  CAS  Google Scholar 

  34. Pan R, Hu K, Jia R, Rotenberg SA, Jiang D, Mirkin MV. Resistive-pulse sensing inside single living cells. J Am Chem Soc. 2020;142(12):5778–84.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Noёl J, Velmurugan J, Wojciech N, Mirkin MV, Lu C, et al. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc Natl Acad Sci U S A. 2012;109(29):11534–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marquitan M, Clausmeyer J, Actis P, Cόrdoba AL, Korchev Y, Mark MD, et al. Intracellular hydrogen peroxide detection with functionalised nanoelectrodes. ChemElectroChem. 2016;3(12):2125–9.

    Article  CAS  Google Scholar 

  37. Ying Y, Hu Y, Gao R, Yu R, Gu Z, Lee LP, et al. Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J Am Chem Soc. 2018;140(16):5385–92.

    Article  PubMed  CAS  Google Scholar 

  38. Marquitan M, Ruff A, Bramini M, Herlitze S, Mark MD, Schuhmann W. Polymer/enzyme-modified HF-etched carbon nanoelectrodes for single-cell analysis. Bioelectrochemistry. 2020;133:107487.

    Article  PubMed  CAS  Google Scholar 

  39. Jin Z, Bard AJ. Atom-by-atom electrodeposition of single isolated cobalt oxide molecules and clusters for studying the oxygen evolution reaction. Proc Natl Acad Sci U S A. 2020;117(23):12651–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhou M, Bao S, Bard AJ. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J Am Chem Soc. 2019;141(18):7327–32.

    Article  PubMed  CAS  Google Scholar 

  41. Zhou M, Dick JE, Bard AJ. Electrodeposition of isolated platinum atoms and clusters on bismuth—characterization and electrocatalysis. J Am Chem Soc. 2017;139(48):17677–82.

    Article  PubMed  CAS  Google Scholar 

  42. Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, et al. Electrochemical nanoprobes for single cell analysis. ACS Nano. 2014;8(1):875–84.

    Article  PubMed  CAS  Google Scholar 

  43. Huang F, Lin M, Duan R, Lou X, Xia F, Willner I. Photoactivated specific mRNA detection in single living cells by coupling “signal-on” fluorescence and “signal-off” electrochemical signals. Nano Lett. 2018;18(8):5116–23.

    Article  PubMed  CAS  Google Scholar 

  44. Jansod S, Cherubini T, Soda Y, Bakker E. Optical sensing with a potentiometric sensing array by Prussian blue film integrated closed bipolar electrodes. Anal Chem. 2020;92(13):9138–45.

    Article  PubMed  CAS  Google Scholar 

  45. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. J Sci. 2010;329(5993):830–4.

    CAS  Google Scholar 

  46. Liu B, Cheng W, Rotenberg SA, Mirkin MV. Scanning electrochemical microscopy of living cells: part 2. Imaging redox and acid/basic reactivities. J Electroanal Chem. 2001;500(1–2):590–7.

    Article  CAS  Google Scholar 

  47. Fulati A, Usman Ali SM, Asif MH, Alvi NH, Willander M, Brännmark C, et al. An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuators B Chem. 2010;150(2):673–80.

    Article  CAS  Google Scholar 

  48. Hou H, Zhao Y, Li C, Wang M, Xu X, Jin Y. Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Sci Rep. 2017;7:1759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sode A, Nebel M, Pinyou P, Schmaderer S, Szeponik J, Plumeré N, et al. Determination of temperature gradients with micrometric resolution by local open circuit potential measurements at a scanning microelectrode. Electroanalysis. 2013;25(9):2084–91.

    Article  CAS  Google Scholar 

  50. Smith LA, Glasscott MW, Vannoy KJ, Dick JE. Enzyme kinetics via open circuit potentiometry. Anal Chem. 2020;92(2):2266–73.

    Article  PubMed  CAS  Google Scholar 

  51. Lee I, Loew N, Tsugawa W, Ikebukuro K, Sode K. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Biosens Bioelectron. 2019;124-125:216–23.

    Article  PubMed  CAS  Google Scholar 

  52. Dick JE. Electrochemical detection of single cancer and healthy cell collisions on a microelectrode. Chem Commun. 2016;52(72):10906–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of North Carolina at Chapel Hill for financial support. We also greatly appreciate Sondrica Goines and Matthew Glasscott for helpful discussions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Dick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCormick, H.K., Dick, J.E. Nanoelectrochemical quantification of single-cell metabolism. Anal Bioanal Chem 413, 17–24 (2021). https://doi.org/10.1007/s00216-020-02899-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02899-9

Keywords

  • Nanoelectrochemistry
  • Single-cell biology
  • Metabolism
  • Electrolysis