Skip to main content
Log in

A thorough evaluation of matrix-free laser desorption ionization on structurally diverse alkaloids and their direct detection in plant extracts

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Alkaloids represent a major group of natural products (NPs), derived from highly diverse organisms. These structurally varied specialized metabolites are widely used for medicinal purposes and also known as toxic contaminants in agriculture and dietary supplements. While the detection of alkaloids is generally facilitated by GC- or LC-MS, these techniques do require considerable efforts in sample preparation and method optimization. Bypassing these limitations and also reducing experimental time, matrix-free laser desorption ionization (LDI) and related methods may provide an interesting alternative. As many alkaloids show close structural similarities to matrices used in matrix-assisted laser desorption ionization (MALDI), they should ionize upon simple laser irradiation without matrix support. With this in mind, the current work presents a systematic evaluation of LDI properties of a wide range of structurally diverse alkaloids. Facilitating a direct comparison between LDI and ESI-MS fragmentation, all tested compounds were further studied by electrospray ionization (ESI). Moreover, crude plant extracts of Atropa belladonna, Cinchona succirubra, and Colchicum autumnale were analyzed by LDI in order to evaluate direct alkaloid detection and dereplication from complex mixtures. Finally, dose-dependent evaluation of MALDI and LDI detection using an extract of Rosmarinus officinalis spiked with atropine, colchicine, or quinine was conducted. Overall, present results suggest that LDI provides a versatile analytical tool for analyzing structurally diverse alkaloids as single compounds and from complex mixtures. It may further serve various potential applications ranging from quality control to the screening for toxic compounds as well as the build up of MS databases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaclavik L, Krynitsky AJ, Rader JI. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography–quadrupole-orbital ion trap mass spectrometry. Anal Chim Acta. 2014;810:45–60.

    PubMed  CAS  Google Scholar 

  2. Fox Ramos AE, Le Pogam P, Fox Alcover C, Otogo N’Nang E, Cauchie G, Hazni H, et al. Collected mass spectrometry data on monoterpene indole alkaloids from natural product chemistry research. Sci Data. déc 2019 [cité 4 avr 2019];6(1). Disponible sur: http://www.nature.com/articles/s41597-019-0028-3.

  3. Otogo N’Nang E, Bernadat G, Mouray E, Kumulungui B, Grellier P, Poupon E, et al. Theionbrunonines A and B: dimeric vobasine alkaloids tethered by a thioether bridge from Mostuea brunonis. Org Lett. 2018;20(20):6596–600.

    PubMed  Google Scholar 

  4. Alcover CF, Bernadat G, Kabran FA, Le Pogam P, Leblanc K, Fox Ramos AE, et al. Molecular networking reveals serpentinine-related bisindole alkaloids from Picralima nitida, a previously well-investigated species. J Nat Prod. 2020;83(4):1207–16.

    PubMed  CAS  Google Scholar 

  5. Pavarini DP, da Silva DB, Carollo CA, Portella APF, Latansio-Aidar SR, Cavalin PO, et al. Application of MALDI-MS analysis of rainforest chemodiversity: a keystone for biodiversity conservation and sustainable use. J Mass Spectrom. 2012;47(11):1482–5.

    PubMed  CAS  Google Scholar 

  6. Silva R, Lopes N, Silva D. Application of MALDI mass spectrometry in natural products analysis. Planta Med. 2016;82(08):671–89.

    PubMed  CAS  Google Scholar 

  7. Shroff R, Rulíšek L, Doubský J, Svatoš A. Acid–base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci. 2009;106(25):10092–6.

    PubMed  Google Scholar 

  8. Law KP, Larkin JR. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem. 2011;399(8):2597–622.

    PubMed  CAS  Google Scholar 

  9. Ernst M, Silva DB, Silva RR, Vêncio RZ, Lopes NP. Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep. 2014;31(6):784–806.

    PubMed  CAS  Google Scholar 

  10. Kudaka I, Asakawa D, Mori K, Hiraoka K. A comparison of EDI with solvent-free MALDI and LDI for the analysis of organic pigments. J Mass Spectrom. 2008;43(4):436–46.

    PubMed  CAS  Google Scholar 

  11. Le Pogam P, Schinkovitz A, Legouin B, Le Lamer A-C, Boustie J, Richomme P. Matrix-free UV-laser desorption ionization mass spectrometry as a versatile approach for accelerating dereplication studies on lichens. Anal Chem. 2015;87(20):10421–8.

    PubMed  Google Scholar 

  12. Le Pogam P, Boustie J, Richomme P, Denis A, Schinkovitz A. The inherent matrix properties of lichen metabolites in matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(23):1993–2002.

    PubMed  Google Scholar 

  13. Schinkovitz A, Boisard S, Freuze I, Osuga J, Mehlmer N, Brück T, et al. Matrix-free laser desorption ionization mass spectrometry as a functional tool for the analysis and differentiation of complex phenolic mixtures in propolis: a new approach to quality control. Anal Bioanal Chem. 2018;410(24):6187–95.

    PubMed  CAS  Google Scholar 

  14. Rogers K, Milnes J, Gormally J. The laser desorption/laser ionization mass spectra of some indole derivatives and alkaloids. Int J Mass Spectrom Ion Process. 1992;115(2–3):219–33.

    CAS  Google Scholar 

  15. Rogers K, Milnes J, Gormally J. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates. Int J Mass Spectrom Ion Process. 1993;123(2):125–31.

    CAS  Google Scholar 

  16. Skopikova M, Hashimoto M, Richomme P, Schinkovitz A. Matrix-free laser desorption ionization mass spectrometry as an efficient tool for the rapid detection of opiates in crude extracts of Papaver somniferum. J Agric Food Chem. 2019;68(3):884–91.

    Google Scholar 

  17. Ibáñez AJ, Scharte J, Bones P, Pirkl A, Meldau S, Baldwin IT, et al. Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis. Plant Methods. 2010;6(1):14.

    PubMed  PubMed Central  Google Scholar 

  18. Nonami H, Fukui S, Erra-Balsells R. β-Carboline alkaloids as matrices for matrix-assisted ultraviolet laser desorption time-of-flight mass spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices. J Mass Spectrom. 1997;32(3):287–96.

    CAS  Google Scholar 

  19. Vermillion-Salsbury RL, Hercules DM. 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom. 2002;16(16):1575–81.

    CAS  Google Scholar 

  20. Rosinke B, Strupat K, Hillenkamp F, Rosenbusch J, Dencher N, Krüger U, et al. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of membrane proteins and non-covalent complexes. J Mass Spectrom. 1995;30(10):1462–8.

    CAS  Google Scholar 

  21. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Jaber A, Seraphin D, Guilet D, Osuga J, Cheble E, Ibrahim G, et al. Bithiophenic MALDI matrices as valuable leads for the selective detection of alkaloids. Anal Bioanal Chem. 409(29):6791–801.

  23. Belladona leaf. In: European Pharmacopoeia 95. European Directorate for the Quality of Medicines and Healthcare. 2018. p. 4452–3.

  24. Quinquina. In: European Pharmacopoeia 92. European Directorate for the Quality of Medicines and Healthcare. 2018. p. 4742–3.

  25. Bruguière A, Derbré S, Dietsch J, Leguy J, Rahier V, Pottier Q, et al. MixONat, a software for the dereplication of mixtures based on 13C NMR spectroscopy. Anal Chem. 2020;92:8793–801.

    PubMed  Google Scholar 

  26. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82(11):4648–51.

    PubMed  CAS  Google Scholar 

  27. Wiegelmann M, Soltwisch J, Jaskolla TW, Dreisewerd K. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry. Anal Bioanal Chem. 2013;405(22):6925–32.

    PubMed  CAS  Google Scholar 

  28. Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57(14):2935–9.

    CAS  Google Scholar 

  29. Horneffer V, Dreisewerd K, Lüdemann H-C, Hillenkamp F, Läge M, Strupat K. Is the incorporation of analytes into matrix crystals a prerequisite for matrix-assisted laser desorption/ionization mass spectrometry? A study of five positional isomers of dihydroxybenzoic acid. Int J Mass Spectrom. 1999;185:859–70.

    Google Scholar 

  30. Chen X, Carroll JA, Beavis RC. Near-ultraviolet-induced matrix-assisted laser desorption/ionization as a function of wavelength. J Am Soc Mass Spectrom. 1998;9(9):885–91.

    CAS  Google Scholar 

  31. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395–426.

    PubMed  CAS  Google Scholar 

  32. Wu KJ, Steding A, Becker CH. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun Mass Spectrom. 1993;7(2):142–6.

    PubMed  CAS  Google Scholar 

  33. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17(5):337–66.

    CAS  Google Scholar 

  34. Gomes CMR, Gottlieb OR. Alkaloid evolution and angiosperm systematics. Biochem Syst Ecol. 1980;8(1):81–7.

    CAS  Google Scholar 

  35. Crescentini TM, Stow SM, Forsythe JG, May JC, McLean JA, Hercules DM. Structural characterization of methylenedianiline regioisomers by ion mobility-mass spectrometry and tandem mass spectrometry. 4. 3-ring and 4-ring isomers. Anal Chem. 2018;90(24):14453–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Schinkovitz A, Kenfack GT, Levillain E, Dias M, Helesbeux J-J, Derbré S, et al. Free and immobilized matrix molecules: impairing ionization by quenching secondary ion formation in laser desorption MS. J Mass Spectrom. 2011;46(9):884–90.

    PubMed  CAS  Google Scholar 

  37. Ohashi M, Wilson JM, Budzikiewicz H, Shamma M, Slusarchyk WA, Djerassi C. Mass spectrometry in structural and stereochemical problems. XXXI. Aporphines and related alkaloids. J Am Chem Soc. 1963;85(18):2807–10.

    CAS  Google Scholar 

  38. Castedo L, López S, De Lera AR, Villaverde C. Alkaloids of Sarcocapnos crassifolia subsp. speciosa. Phytochemistry. 1989;28(1):251–7.

    CAS  Google Scholar 

  39. Guinaudeau H, Freyer AJ, Shamma M. Spectral characteristics of the bisbenzylisoquinoline alkaloids. Nat Prod Rep. 1986;3:477.

    CAS  Google Scholar 

  40. Jeong E-K, Lee SY, Yu SM, Park NH, Lee H-S, Yim Y-H, et al. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(15):1661–74.

    PubMed  CAS  Google Scholar 

  41. Shariatgorji M, Spacil Z, Maddalo G, Cardenas LB, Ilag LL. Matrix-free thin-layer chromatography/laser desorption ionization mass spectrometry for facile separation and identification of medicinal alkaloids. Rapid Commun Mass Spectrom. 2009;23(23):3655–60.

    PubMed  CAS  Google Scholar 

  42. Deroussent A, Ré M, Hoellinger H, Vanquelef E, Duval O, Sonnier M, et al. In vitro metabolism of ethoxidine by human CYP1A1 and rat microsomes: identification of metabolites by high-performance liquid chromatography combined with electrospray tandem mass spectrometry and accurate mass measurements by time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(4):474–82.

    PubMed  CAS  Google Scholar 

  43. Messmer WM, Tin-wa M, Fong HHS, Bevelle C, Farnsworth NR, Abraham DJ, et al. Fagaronine, a new tumor inhibitor isolated from Fagara zanthoxyloides Lam. (Rutaceae). J Pharm Sci. 1972;61(11):1858–9.

    PubMed  CAS  Google Scholar 

  44. Dostál J, Bochořáková H, Táborská E, Slavík J, Potáček M, Buděšínský M, et al. Structure of sbanguinarine ase. J Nat Prod. 1996;59(6):599–602.

    Google Scholar 

  45. Qing Z-X, Cheng P, Liu X-B, Liu Y-S, Zeng J-G. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J Pharm Biomed Anal. 2015;103:26–34.

    PubMed  CAS  Google Scholar 

  46. Thiel A, Etheve S, Fabian E, Leeman WR, Plautz JR. Using in vitro/in silico data for consumer safety assessment of feed flavoring additives – a feasibility study using piperine. Regul Toxicol Pharmacol. 2015;73(1):73–84.

    PubMed  CAS  Google Scholar 

  47. Verpoorte R, Niessen WMA. Liquid chromatography coupled with mass spectrometry in the analysis of alkaloids. Phytochem Anal. 1994;5(5):217–32.

    Google Scholar 

  48. Bowden K. Acidity functions for strongly basic solutions. Chem Rev. 1966;66(2):119–31.

    CAS  Google Scholar 

  49. Witkop B. Gelsemine. J Am Chem Soc. 1948;70(4):1424–7.

    PubMed  CAS  Google Scholar 

  50. Bartlett MF, Dickel DF, Taylor WI. The alkaloids of Tabernanthe iboga. Part IV. 1 The structures of ibogamine, ibogaine, tabernanthine and voacangine. J Am Chem Soc. 1958;80(1):126–36.

    CAS  Google Scholar 

  51. Weiming C, Yaping V, Xiaotian L. Alkaloids from roots of Alstonia yunnanensis. Planta Med. 1983;49:62.

    PubMed  CAS  Google Scholar 

  52. Schirmer R. Reserpine. Anal Profiles Drug Subst. 1975;4:384–430.

    CAS  Google Scholar 

  53. Douglas KT, Sharma RK, Walmsley JF, Hider RC. Ionization processes of some harmala alkaloids. Mol Pharmacol. 1983;23(3):614–8.

    PubMed  CAS  Google Scholar 

  54. Dou X, Yao W, Jiang C, Lu Y. Enantioselective N-alkylation of isatins and synthesis of chiral N-alkylated indoles. Chem Commun. 2014;50(77):11354–7.

    CAS  Google Scholar 

  55. Scott WG, Horan LH, Martick M. The hammerhead ribozyme: structure, catalysis, and gene regulation. In: Progress in molecular biology and translational science. Elsevier; 2013. p. 1–23.

  56. von Bruchhausen F, Ebel S, Hackenthal E, Holzgrabe U. Hagers Handbuch der Pharmazeutischen Praxis: Folgeband 5: Stoffe LZ. Springer-Verlag; 2013. S 853–855.

  57. Wilson JM, Ohashi M, Budzikiewicz H, Šantavỳ F, Djerassi C. Mass spectrometry in structural and stereochemical problems—XXXIII: colchicine alkaloids. Tetrahedron. 1963;19(12):2225–31.

    PubMed  CAS  Google Scholar 

  58. Zhang P, Li Y, Liu G, Sun X, Zhou Y, Deng X, et al. Simultaneous determination of atropine, scopolamine, and anisodamine from Hyoscyamus niger L. in rat plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetics study. J Sep Sci. 2014;37(19):2664–74.

    PubMed  CAS  Google Scholar 

  59. Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, et al. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species: matrix-free UV-LDI mass spectrometric imaging at the single-cell level. Plant J. 2009;60(5):907–18.

    PubMed  Google Scholar 

  60. Silva DB, Turatti ICC, Gouveia DR, Ernst M, Teixeira SP, Lopes NP. Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci Rep. 2014;4:4309.

    PubMed  PubMed Central  Google Scholar 

  61. Le Pogam P, Legouin B, Geairon A, Rogniaux H, Lohézic-Le Dévéhat F, Obermayer W, et al. Spatial mapping of lichen specialized metabolites using LDI-MSI: chemical ecology issues for Ophioparma ventosa. Sci Rep. 2016;6:37807.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mass spectrometric experiments were performed at the MATRIX platform of the University of Angers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Le Pogam or Andreas Schinkovitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 18996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Pogam, P., Richomme, P., Beniddir, M.A. et al. A thorough evaluation of matrix-free laser desorption ionization on structurally diverse alkaloids and their direct detection in plant extracts. Anal Bioanal Chem 412, 7405–7416 (2020). https://doi.org/10.1007/s00216-020-02872-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02872-6

Keywords

Navigation