Skip to main content
Log in

Porous silica and polymer monolith architectures as solid-state optical chemosensors for Hg2+ ions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We demonstrate a simple strategy to concoct a competent solid-state opto-chemosensor for the selective and sensitive visual detection of Hg2+ ions. The sensor fabrication involves the utilization of indigenously prepared mesoporous silica and polymer monoliths as probe anchoring templates and 8-hydroxy-7-(4-n-butylphenylazo) quinoline (HBPQ) as the chromo-ionophoric probe for Hg2+ sensing. Both the monoliths are designed with discrete structural and morphological features to serve as efficient host templates. The structural and surface features of the monoliths are characterized using p-XRD, TEM, SEM, SAED, EDAX, XPS, and N2 isotherm analysis. The synergetic features of monolith structural hierarchy along with the probe’s selective chelating ability enable rapid signal response and remarkable ion selectivity for Hg2+. The solid-state sensors evince a linear signal response from 0.6 to 150 μg/L for Hg2+ recognition, with superior data authenticity and replication that is preceded by an RSD value of ≤ 2.25% when tested with real water samples.

Graphical abstract

Mesoporous silica and polymer monolith architects hosting HBPQ probe molecules demonstrate an excellent visual sensing of ultra-trace (μg/L) Hg2+ in various water samples with a striking color transition from light orange to dark red upon complexation of probe with Hg2+. The solid-state sensors are Hg2+ ion selective, super-responsive, real-time applicable, and also reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013;47:4967–83. https://doi.org/10.1021/es305071v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM. Bio magnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol. 2013;47:13385–94. https://doi.org/10.1021/es403103t.

    Article  CAS  PubMed  Google Scholar 

  3. Ward DM, Nislow KH, Folt CL. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci. 2010;1195:62–83. https://doi.org/10.1111/j.1749-6632.2010.05456.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Korbas M, Odonoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, et al. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Neurosci. 2010;1:810–8. https://doi.org/10.1021/cn1000765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiang CK, Huang CC, Liu CW, Chang HT. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution. Anal Chem. 2008;80:3716–21. https://doi.org/10.1021/ac800142k.

    Article  CAS  PubMed  Google Scholar 

  6. Madden JT, Fitzgerald N. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury. Spectrochim Acta B At Spectrosc. 2009;64:925–7. https://doi.org/10.1016/j.sab.2009.08.002.

    Article  CAS  Google Scholar 

  7. Bagheri H, Naderi M. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples. J Hazard Mater. 2009;165:353–8. https://doi.org/10.1016/j.jhazmat.2008.09.128.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu X, Alexandratos SD. Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the “memory effect.”. Microchem J. 2007;86:37–41. https://doi.org/10.1016/j.microc.2006.09.004.

    Article  CAS  Google Scholar 

  9. Dolan SP, Nortrup DA, Bolger PM, Capar SG. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. J Agric Food Chem. 2003;51:1307–12. https://doi.org/10.1021/jf026055x.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Wei Q, Yuan R, Zhou X, Liu H, Shan H, et al. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry. Talanta. 2007;71:68–72. https://doi.org/10.1016/j.talanta.2006.03.023.

    Article  CAS  PubMed  Google Scholar 

  11. Matlock MM, Howerton BS, Atwood DA. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002;36:4757–64. https://doi.org/10.1016/S0043-1354(02)00149-5.

    Article  CAS  PubMed  Google Scholar 

  12. Zejli H, Sharrock P, De Cisneros JLHH, Naranjo-Rodriguez I, Temsamani KR. Voltammetric determination of trace mercury at a sonogel-carbon electrode modified with poly-3-methylthiophene. Talanta. 2005;68:79–85. https://doi.org/10.1016/j.talanta.2005.04.060.

    Article  CAS  PubMed  Google Scholar 

  13. Jayabal S, Sathiyamurthi R, Ramaraj R. Selective sensing of Hg2+ ions by optical and colorimetric methods using gold nanorods embedded in a functionalized silicate sol-gel matrix. J Mater Chem A. 2014;2:8918–25. https://doi.org/10.1039/c4ta01363h.

    Article  CAS  Google Scholar 

  14. Balamurugan A, Lee H Il (2015) Single molecular probe for multiple analyte sensing: efficient and selective detection of mercury and fluoride ions. Sensors Actuators B Chem 216:80–85. https://doi.org/10.1016/j.snb.2015.04.026.

  15. Tsai HJ, Su YC, Wan CF, Wu AT. A selective colorimetric fluorescent chemosensor for Hg2+ in aqueous medium and in the solid state. J Lumin. 2018;194:279–83. https://doi.org/10.1016/j.jlumin.2017.10.023.

    Article  CAS  Google Scholar 

  16. Thakur N, Kumar SA, Kumar KSA, Pandey AK, Kumar SD, Reddy AVR. Development of a visual optode sensor for onsite determination of Hg(II). Sensors Actuators B Chem. 2015;211:346–53. https://doi.org/10.1016/j.snb.2015.01.087.

    Article  CAS  Google Scholar 

  17. Udhayakumari D, Velmathi S. Colorimetric and fluorescent sensor for selective sensing of Hg2+ ions in semi aqueous medium. J Lumin. 2013;136:117–21. https://doi.org/10.1016/j.jlumin.2012.11.011.

    Article  CAS  Google Scholar 

  18. Sedghi R, Kazemi S, Heidari B. Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid. Sensors Actuators B Chem. 2017;245:860–7. https://doi.org/10.1016/j.snb.2017.01.203.

    Article  CAS  Google Scholar 

  19. Chen L, Lou T, Yu C, Kang Q, Chen L. N-1-(2-Mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+. Analyst. 2011;136:4770–3. https://doi.org/10.1039/c1an15585g.

    Article  CAS  PubMed  Google Scholar 

  20. Liang GX, Wang L, Zhang H, Han Z, Wu X. A colorimetric probe for the rapid and selective determination of mercury(II) based on the disassembly of gold nanorods. Microchim Acta. 2012;179:345–50. https://doi.org/10.1007/s00604-012-0882-6.

    Article  CAS  Google Scholar 

  21. Vallejos S, Reglero JA, García FC, García JM. Direct visual detection and quantification of mercury in fresh fish meat using facilely prepared polymeric sensory labels. J Mater Chem A. 2017;5:13710–6. https://doi.org/10.1039/c7ta03902f.

    Article  CAS  Google Scholar 

  22. Awual MR, Hasan MM, Eldesoky GE, Khaleque MA, Rahman MM, Naushad M. Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem Eng J. 2016;290:243–51. https://doi.org/10.1016/j.cej.2016.01.038.

    Article  CAS  Google Scholar 

  23. Awual MR. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem Eng J. 2017;307:456–65. https://doi.org/10.1016/j.cej.2016.08.108.

    Article  CAS  Google Scholar 

  24. Abbas K, Znad H, Awual MR. A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chem Eng J. 2018;334:432–43. https://doi.org/10.1016/j.cej.2017.10.054.

    Article  CAS  Google Scholar 

  25. Chen L, Chan L, Fu X, Lu W. Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl Mater Interfaces. 2013;5:284–90. https://doi.org/10.1021/am3020857.

    Article  CAS  PubMed  Google Scholar 

  26. Shahat A, Elsalam SA, Herrero-Martínez JM, Simó-Alfonso EF, Ramis-Ramos G. Optical recognition and removal of Hg(II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF. Sensors Actuators B Chem. 2017;253:164–72. https://doi.org/10.1016/j.snb.2017.06.125.

    Article  CAS  Google Scholar 

  27. Feng P, Bu X, Stucky GD, Pine DJ. Monolithic mesoporous silica templated by microemulsion liquid crystals. J Am Chem Soc. 2000;122:994–5. https://doi.org/10.1021/ja992921j.

    Article  CAS  Google Scholar 

  28. Zhou LF, He XG, Qiao JQ, Lian HZ, Ge X, Chen HY. A practical interface designed for on-line polymer monolith microextraction: synthesis and application of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) monolith. J Chromatogr A. 2012;1256:15–21. https://doi.org/10.1016/j.chroma.2012.07.047.

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Li L, Zhu D, He P, Fang Y, Cheng G. Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Anal Chim Acta. 2011;694:115–9. https://doi.org/10.1016/j.aca.2011.02.045.

    Article  CAS  PubMed  Google Scholar 

  30. Shahat A, Hassan HMA, Azzazy HME. Optical metal-organic framework sefavonsor for selective discrimination of some toxic metal ions in water. Anal Chim Acta. 2013;793:90–8. https://doi.org/10.1016/j.aca.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Jiang L, Mei Y, Song R, Tian D, Huang H. Colorimetric sensing strategy for mercury(ii) and melamine utilizing cysteamine-modified gold nanoparticles. Analyst. 2013;138:5338–43. https://doi.org/10.1039/c3an00690e.

    Article  CAS  PubMed  Google Scholar 

  32. Lou T, Chen Z, Wang Y, Chen L. Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces. 2011;3:1568–73. https://doi.org/10.1021/am200130e.

    Article  CAS  PubMed  Google Scholar 

  33. Chen N, Zhang Y, Liu H, Wu X, Li Y, Miao L, et al. High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms. ACS Sensors. 2016;1:521–7. https://doi.org/10.1021/acssensors.6b00001.

    Article  CAS  Google Scholar 

  34. Chen L, Li J, Chen L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl Mater Interfaces. 2014;6:15897–904. https://doi.org/10.1021/am503531c.

    Article  CAS  PubMed  Google Scholar 

  35. Lou T, Chen L, Zhang C, Kang Q, You H, Shen D, et al. A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles. Anal Methods. 2012;4:488–91. https://doi.org/10.1039/c2ay05764f.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to SERB for the financial support granted under Start-up Research Grant Scheme (Project File No. SB/FT/CS-091/2013) and VIT Vellore in the form of Institute Seed Grant for the financial year, 2019–2020. The authors also thank IIT-Madras and IISc Bangalore for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Akhila Maheswari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal rights

The authors also state that the current research does not involve any human or animal participation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhesan, T., Mohan, A. Porous silica and polymer monolith architectures as solid-state optical chemosensors for Hg2+ ions. Anal Bioanal Chem 412, 7357–7370 (2020). https://doi.org/10.1007/s00216-020-02870-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02870-8

Keywords

Navigation