Skip to main content

Advertisement

Log in

Time-dependent metabolomics study of cerebral ischemia–reperfusion and its treatment: focus on the combination of traditional Chinese medicine and Western medicine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cerebral ischemia is a common cerebrovascular disease with high mortality, and thrombolysis can cause more severe reperfusion injury. In clinical practice, Ginkgo biloba dispersible tablets combined with nimodipine have been widely used to reduce cerebral ischemia–reperfusion injury, but the mechanism has not been clearly elucidated. To explore this relationship, the change in metabolism between a sham operation group, a model group and an administration group was analyzed for the period after cerebral ischemia. Biochemical assays were used to assess injury extent and the therapeutic effects of different dosing regimens. A metabolomics method based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was developed to screen biomarkers in plasma of rats and analyze abnormal metabolic pathways. Using statistical analysis, corticosterone, glutamine, oleic acid, isoleucine, phenylalanine and sphingomyelin (d18:1/16:0) were screened as diagnostic biomarkers. The metabolic pathways perturbed by cerebral ischemia–reperfusion involved phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, alpha-linolenic acid metabolism, retinol metabolism, alanine, aspartate and glutamate metabolism, and glycerophospholipid metabolism. Analysis of the adjustment of biomarkers at different time points showed that the best time to evaluate the efficacy of combined administration is about 6 h after administration. Both pathological characteristics and metabolomics confirmed the better effect of the combined group than the individual groups. In this study, a non-targeted metabolomics method was developed to explore the mechanism of action of the combination of traditional Chinese and Western medicine in cerebral ischemia–reperfusion treatment, providing a theoretical basis for disease prognosis and treatment options.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401. https://doi.org/10.1038/nm.2507.

    Article  CAS  PubMed  Google Scholar 

  2. Chinese Medical Association Neurology Branch, Cerebrovascular Diseases Group Chinese Medical Association Neurology Branch. Diagnostic criteria of cerebrovascular diseases in China (version 2019). Chin J Neurol. 2019;52(9):710–5.

    Google Scholar 

  3. Nishijima Y, Niizuma K, Fujimura M, Akamatsu Y, Shimizu H, Tominaga T. Consistent delayed unilateral neuronal death after modified transient focal cerebral ischemia in mice that mimics neuronal injury after transient global cerebral ischemia. J Neurosurg. 2015;123(1):243–53. https://doi.org/10.3171/2014.9.JNS14778.

    Article  PubMed  Google Scholar 

  4. Zhang ZJ, Peng DT, Zhu HY, Wang XM. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull. 2012;87(2-3):193–8. https://doi.org/10.1016/j.brainresbull.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  5. Huang P. Clinical effect of Ginkgo biloba extract combined with nimodipine in the treatment of transient ischemic attack. Drugs Clin. 2017;14(1):41–4.

    Google Scholar 

  6. Zhang N, Shu HY, Huang TT, Zhang QL, Li D, Qun ZG, et al. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS ONE. 2014;9(6):e100286. https://doi.org/10.1371/journal.pone.0100286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res. 2012;53(3):567–76. https://doi.org/10.1194/jlr.M022376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li NJ, Zhou L, Li W, Liu Y, Wang JH, He P. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study. J Chromatogr B Anal Technol Biomed Life Sci. 2015;985:54–61. https://doi.org/10.1016/j.jchromb.2015.01.016.

    Article  CAS  Google Scholar 

  9. Yu M, Cui FX, Jia HM, Zhou C, Yang Y, Zhang HW, et al. Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics. J Pharm Biomed Anal. 2016;120:181–9. https://doi.org/10.1016/j.jpba.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  10. Gika HG, Wilson ID, Theodoridis GA. LC-MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J Chromatogr B Anal Technol Biomed Life Sci. 2014;966:1–6. https://doi.org/10.1016/j.jchromb.2014.01.054.

    Article  CAS  Google Scholar 

  11. Zhu YT, Li L, Zhang G, Wan H, Yang CY. Metabolic characterization of pyrotinib in humans by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1033-1034:117–27. https://doi.org/10.1016/j.jchromb.2016.08.009.

    Article  CAS  Google Scholar 

  12. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. https://doi.org/10.1161/01.STR.20.1.84.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao J, Wang TY, Li P, Liu R, Li Q, Bi KS. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1028:33–41. https://doi.org/10.1016/j.jchromb.2016.06.005.

    Article  CAS  Google Scholar 

  14. Yoo G, Hong SH, Wee SS, Chung SH, Han KT. The effects of deferoxamine on the oxygen free radical and neutrophil in ischemia-reperfusion injury. J Korean Soc Plast Reconstr Surg. 2000;27(3):270–5.

    Google Scholar 

  15. Tang DQ, Zhang ZJ, Gao YY, Wei YQ, Han L. Protective effects of serum containing Ginkgo biloba extract on glomerulosclerosis in rat mesangial cells. J Ethnopharmacol. 2009;124(1):26–33. https://doi.org/10.1016/j.jep.2009.04.017.

    Article  CAS  PubMed  Google Scholar 

  16. Pierr S, Jamme I, Robert K, Gerbi A, Duran M, Sennoune S, et al. Ginkgo biloba extract (EGb 761) protects Na,K-ATPase isoenzymes during cerebral ischemia. Cell Mol Biol. 2002;48(6):671–9.

    Google Scholar 

  17. Fan P, Liu HW, Wang Y, Zhang F, Bai H. Apolipoprotein E-containing HDL-associated platelet-activating factor acetylhydrolase activities and malondialdehyde concentrations in patients with PCOS. Reprod BioMed Online. 2012;24(2):197–205. https://doi.org/10.1016/j.rbmo.2011.10.010.

    Article  CAS  PubMed  Google Scholar 

  18. Gaumond F, Fortin D, Stankova J, Rolapleszczynski M. Differential signaling pathways in platelet-activating factor-induced proliferation and interleukin-6 production by rat vascular smooth muscle cells. J Cardiovasc Pharmacol. 1997;30(2):169–75. https://doi.org/10.1097/00005344-199708000-00004.

    Article  CAS  PubMed  Google Scholar 

  19. Anctil M, Poulain I, Pelletier C. Nitric oxide modulates peristaltic muscle activity associated with fluid circulation in the sea pansy Renilla koellikeri. J Exp Biol. 2005;208(10):2005–17. https://doi.org/10.1242/jeb.01607.

    Article  CAS  PubMed  Google Scholar 

  20. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12. https://doi.org/10.1056/NEJM199312303292706.

    Article  CAS  PubMed  Google Scholar 

  21. Rise IR, Kirkeby OJ. Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis. J Neurosurg. 1998;89(3):448–53. https://doi.org/10.3171/jns.1998.89.3.0448.

    Article  CAS  PubMed  Google Scholar 

  22. Yun X, Maximov VD, Yu J, Zhu H, Kindy MS. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab. 2013;33(4):583–92. https://doi.org/10.1038/jcbfm.2012.209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol. 1991;71(4):1185–95. https://doi.org/10.1152/jappl.1991.71.4.1185.

    Article  CAS  PubMed  Google Scholar 

  24. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33. https://doi.org/10.1080/09553009414550041.

    Article  CAS  PubMed  Google Scholar 

  25. Tomassoni D, Lanari A, Silvestrelli G, Traini E, Amenta F. Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin Exp Hypertens. 2008;30(8):744–66. https://doi.org/10.1080/10641960802580232.

    Article  CAS  PubMed  Google Scholar 

  26. Xiong RL, Lu WG, Li J, Wang PQ, Xu R, Chen TT. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int J Pharm. 2008;350(1-2):338–43. https://doi.org/10.1016/j.ijpharm.2007.08.036.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Zou Z, Li YK, Yuan HB, Shi XY. Glutamine-induced heat shock protein protects against renal ischaemia-reperfusion injury in rats. J Nephrol. 2009;14(6):573–80. https://doi.org/10.1111/j.1440-1797.2009.01108.x.

    Article  CAS  Google Scholar 

  28. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1387):1155–63. https://doi.org/10.1098/rstb.1999.0471.

    Article  CAS  Google Scholar 

  29. Belousov AB, Fontes JD. Role of neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemic neuronal death. Neural Regen Res. 2016;11(1):75–6. https://doi.org/10.4103/1673-5374.169630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun N, Hao JR, Li XY, Yin XH, Zong YY, Zhang GY, et al. GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats. Cell Death Dis. 2013;4(8):e771. https://doi.org/10.1038/cddis.2013.299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harward TRS, Coe DA, Souba WW, Klingman N, Seeger JM. Glutamine preserves gut glutathione levels during intestinal ischemia/reperfusion. J Surg Res. 1994;56(4):351–5. https://doi.org/10.1006/jsre.1994.1054.

    Article  CAS  PubMed  Google Scholar 

  32. Liu WX, Mu F, Liu TL, Xu H, Chen JZ, Jia N, et al. Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry–based metabonomics reveal protective effect of Terminalia chebula extract on ischemic stroke rats. Rejuvenation Res. 2018;21(6):541–52. https://doi.org/10.1089/rej.2018.2082.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Wang JS, Zhang C, Liao ST, Li P, Xu DQ, et al. The components of Huang-Lian-Jie-Du-Decoction act synergistically to exert protective effects in a rat ischemic stroke model. Oncotarget. 2016;7(49):80872–87. https://doi.org/10.18632/oncotarget.12645.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen SN, Sun M, Zhao XH, Yang ZF, Liu WX. Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol Med Rep. 2019;19(4):3009–20. https://doi.org/10.3892/mmr.2019.9959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bazan NG. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol. 1976;72:317–35. https://doi.org/10.1007/978-1-4684-0955-0_26.

    Article  CAS  PubMed  Google Scholar 

  36. Gilboe DD, Kintner DB, Fitzpatric JH, Emoto SE, Esanu A, Braquet P, et al. Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J Neurochem. 1991;56(1):311–9. https://doi.org/10.1111/j.1471-4159.1991.tb02597.x.

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi Y, Morii H, Tamura M, Hayaishi O, Watanabe Y. A possible mechanism of mitochondrial dysfunction during cerebral ischemia: inhibition of mitochondrial respiration activity by arachidonic acid. Arch Biochem Biophys. 1991;289(1):33–8. https://doi.org/10.1016/0003-9861(91)90438-O.

    Article  CAS  PubMed  Google Scholar 

  38. Zerangue N, Arriza JL, Amara SG, Kavanaugh MP. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J Biol Chem. 1995;270(12):6433–5. https://doi.org/10.1074/jbc.270.12.6433.

    Article  CAS  PubMed  Google Scholar 

  39. Chow SC, Jondal M. Polyunsaturated free fatty acids stimulate an increase in cytosolic Ca2+ by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in T cells through a mechanism independent of phosphoinositide turnover. J Biol Chem. 1990;265(2):902–7. https://doi.org/10.1016/0014-5793(90)80089-2.

    Article  CAS  PubMed  Google Scholar 

  40. Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40(9):1549–58.

    CAS  PubMed  Google Scholar 

  41. Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Namba H. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neurol Res. 2010;168(1):219–25. https://doi.org/10.1016/j.neuroscience.2010.03.056.

    Article  CAS  Google Scholar 

  42. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208(1):10–8. https://doi.org/10.1016/j.atherosclerosis.2009.05.029.

    Article  CAS  PubMed  Google Scholar 

  43. Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2006;8(2):128–40. https://doi.org/10.1038/nrn2059.

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Kim SY, Pribis JP, Lotze M, Mollen KP, Shapiro R, et al. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med. 2013;19(1):88–98. https://doi.org/10.2119/molmed.2012.00306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, et al. Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res. 1996;18(4):337–41. https://doi.org/10.1080/01616412.1996.11740432.

    Article  CAS  PubMed  Google Scholar 

  46. Fontella FU, Siqueira IR, Vasconcellos APS, Tabajara AS, Netto CA, Dalmaz C. Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res. 2005;30(1):105–11. https://doi.org/10.1007/s11064-004-9691-6.

    Article  CAS  PubMed  Google Scholar 

  47. Yamane K, Yokono K, Okada Y. Anaerobic glycolysis is crucial for the maintenance of neural activity in Guinea pig hippocampal slices. J Neurosci Methods. 2000;103(2):163–71. https://doi.org/10.1016/S0165-0270(00)00312-5.

    Article  CAS  PubMed  Google Scholar 

  48. Khorram O, Ghazi R, Chuang TD, Han G, Naghi J, Ni Y, et al. Excess maternal glucocorticoids in response to in utero undernutrition inhibit offspring angiogenesis. Reprod Sci. 2014;21(5):601–11. https://doi.org/10.1177/1933719113508819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sugo N, Hurn PD, Morahan MB, Hattori K, Traystman RJ, DeVries AC. Social stress exacerbates focal cerebral ischemia in mice. Stroke. 2002;33(6):1660–4. https://doi.org/10.1161/01.STR.0000016967.76805.BF.

    Article  PubMed  Google Scholar 

  50. Malcolm M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci. 2002;3(11):843–53. https://doi.org/10.1038/nrn963.

    Article  CAS  Google Scholar 

  51. Mizee MR, Wooldrik D, Lakeman KAM, Hof BVH, Reijerkerk A. Retinoic acid induces blood-brain barrier development. J Neurosci. 2013;33(4):1660–71. https://doi.org/10.1523/JNEUROSCI.1338-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim B, Kang K, Lee Y. Effect of retinoids on LPS-induced COX-2 expression and COX-2 associated PGE2 release from mouse peritoneal macrophages and TNF-α release from rat peripheral blood mononuclear cells. Toxicol Lett. 2004;150(2):191–201. https://doi.org/10.1016/j.toxlet.2004.01.010.

    Article  CAS  PubMed  Google Scholar 

  53. Fawzy AA, Vishwanath BS, Franson RC. Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action. Agents Actions. 1989;25(3-4):394–400. https://doi.org/10.1007/BF01965048.

    Article  Google Scholar 

  54. Choi WH, Ji KA, Jeon SB, Yang MS, Kim H, Min KJ, et al. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: suppression of interferon-γ-induced JAK/STAT phosphorylation. Biochem Biophys Res Commun. 2005;329(1):125–31. https://doi.org/10.1016/j.bbrc.2005.01.110.

    Article  CAS  PubMed  Google Scholar 

  55. Shen H, Luo Y, Kuo CC, Deng XL, Wang Y. 9-cis-retinoic acid reduces ischemic brain injury in rodents via bone morphogenetic protein. J Neurosci Res. 2009;87(2):545–55. https://doi.org/10.1002/jnr.21865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harvey BK, Shen H, Chen GJ, Yoshida Y, Wang Y. Midkine and retinoic acid reduce cerebral infarction induced by middle cerebral artery ligation in rats. Neurosci Lett. 2004;369(2):138–41. https://doi.org/10.1016/j.neulet.2004.07.086.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Project (2018YFC1707900), National Natural Science Funds of China (Grant No. 81703463/H3010), National Science and Technology Major Project (2017ZX09101001), Liaoning Distinguished Professor Project of Qing Li and the National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control.

Author information

Authors and Affiliations

Authors

Contributions

Ran Liu designed and directed the project. Weiwei Rong guided the data collection and processing. Kefei Han, Qi Wang and Jiameng Qu conducted the experiments and collected the original data. Kefei Han analyzed the data, summarized the results and wrote the manuscript. Weiwei Rong and Ran Liu revised the manuscript.

Corresponding author

Correspondence to Ran Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

All animal experiments in this study were in line with the ethical requirements of the Animal Care and Committee of Shenyang Pharmaceutical University, and the study was approved by the Animal Ethics Committee of the institution (SYPU-IACUC-2016-0822-201).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Rong, W., Wang, Q. et al. Time-dependent metabolomics study of cerebral ischemia–reperfusion and its treatment: focus on the combination of traditional Chinese medicine and Western medicine. Anal Bioanal Chem 412, 7195–7209 (2020). https://doi.org/10.1007/s00216-020-02852-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02852-w

Keywords

Navigation