Skip to main content
Log in

Photoluminescent hydrophilic cyclodextrin-stabilized cysteine-protected copper nanoclusters for detecting lysozyme

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lysozyme (LYZ) sensors have attracted increased attention because rapid and sensitive detection of LYZ is highly desirable for various diseases associated with humans. In this research, we designed l-cysteine-protected ultra small photoluminescent (PL) copper nanoclusters (CuNCs) conjugated with β-cyclodextrin (β-CD) for rapid detection of LYZ in human serum samples at room temperature. The proposed β-CD-CuNCs exhibited excellent water solubility, ultrafine size, good dispersion, bright photoluminescence, and good photostability. The β-CD-CuNCs exhibit an excitation and emission maximum at 370 nm and 492 nm, respectively, with an absolute quantum yield (QY) of 54.6%. β-CD-CuNCs showed a fluorescence lifetime of 12.7 ns. The addition of LYZ would result in PL quenching from β-CD-CuNCs. The lowest detectable LYZ concentration was 50 nM for the naked eye and the limit of detection (LOD) and limit of quantification (LOQ) were 0.36 nM and 1.21 nM, respectively, by emission measurement observed in the LYZ concentration range from 30 to 100 nM. It is important to note that the PL β-CD-CuNC strategy possessed great selectivity toward LYZ relative to other biomolecules. The proposed nanosensor was efficiently applied to determine the LYZ level in human serum sample average recoveries from 96.15 to 104.05% and relative standard deviation (RSD) values lower than 3.0%. Moreover, the proposed sensing system showed many advantages, including high speed, high sensitivity, high selectivity, low cost, and simple preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jolles P. Lysozymes: model enzymes in biochemistry and biology. Exp Suppl. 1996;75:449. https://doi.org/10.1007/978-3-0348-9225-4.

    Article  Google Scholar 

  2. Swaminathan R, Ravi VK, Kumar S, Kumar MVS, Chandra N Lysozyme: a model protein for amyloid research. Adv Protein Chem Struct Biol. 2011;84:63–111. https://doi.org/10.1016/B978-0-12-386483-3.00003-3

  3. Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35:127–60. https://doi.org/10.1007/s12038-010-0015-5.

    Article  CAS  PubMed  Google Scholar 

  4. Yan L, Shen S, Yun J, Yao K. Isolation of lysozyme from chicken egg white using polyacrylamide-based cation-exchange cryogel. Chinese J Chem Eng. 2011;19:876–80. https://doi.org/10.1016/S1004-9541(11)60068-2.

    Article  CAS  Google Scholar 

  5. González DC, Savariar EN, Thayumanavan S. Fluorescence patterns from supramolecular polymer assembly and disassembly for sensing metallo- and nonmetalloproteins. J Am Chem Soc. 2009;131:7708–16. https://doi.org/10.1021/ja900579g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levinson SS, Elin RJ, Yam L. Light chain proteinuria and lysozymuria in a patient with acute monocytic leukemia. Clin Chem. 2002;48:1131–2. https://doi.org/10.1093/clinchem/48.7.1131.

    Article  CAS  PubMed  Google Scholar 

  7. Cai Z, Chen G, Huang X, Ma M. Determination of lysozyme at the nanogram level in chicken egg white using resonance Rayleigh-scattering method with Cd-doped ZnSe quantum dots as probe. Sensors Actuators B Chem. 2011;157:368–73. https://doi.org/10.1016/j.snb.2011.04.058.

    Article  CAS  Google Scholar 

  8. Lie SQ, Zou HY, Chang Y, Huang CZ. Tuning of the near-infrared localized surface plasmon resonance of Cu2-xSe nanoparticles with lysozyme-induced selective aggregation. RSC Adv. 2014;4:55094–9. https://doi.org/10.1039/c4ra05828c.

    Article  CAS  Google Scholar 

  9. Mörsky P. Turbidimetric determination of lysozyme with Micrococcus lysodeikticus cells: reexamination of reaction conditions. Anal Biochem. 1983;128:77–85. https://doi.org/10.1016/0003-2697(83)90347-0.

    Article  PubMed  Google Scholar 

  10. Liu DY, Xin YY, He XW, Yin XB. A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified gold electrodes. Analyst. 2011;136:479–85. https://doi.org/10.1039/c0an00607f.

    Article  CAS  PubMed  Google Scholar 

  11. Pellegrino L, Tirelli A. A sensitive HPLC method to detect hen’s egg white lysozyme in milk and dairy products. Int Dairy J. 2000;10:435–42. https://doi.org/10.1016/S0958-6946(00)00065-0.

    Article  CAS  Google Scholar 

  12. Zhang L, Wang E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–57. https://doi.org/10.1016/j.nantod.2014.02.010.

    Article  CAS  Google Scholar 

  13. Li J, Zhu JJ, Xu K. Fluorescent metal nanoclusters: from synthesis to applications. TrAC - Trends Anal Chem. 2014;58:90–8. https://doi.org/10.1016/j.trac.2014.02.011.

    Article  CAS  Google Scholar 

  14. Wilcoxon JP, Abrams BL. Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev. 2006;35:1162–94. https://doi.org/10.1039/b517312b.

    Article  CAS  PubMed  Google Scholar 

  15. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6:401–18. https://doi.org/10.1016/j.nantod.2011.06.004.

    Article  CAS  Google Scholar 

  16. Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–623. https://doi.org/10.1039/c2cs15325d.

    Article  CAS  PubMed  Google Scholar 

  17. Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7:1549–65. https://doi.org/10.1039/c4nr05794e.

    Article  CAS  PubMed  Google Scholar 

  18. Anandhakumar S, Rajaram R, Mathiyarasu J. Unusual seedless approach to gold nanoparticle synthesis: application to selective rapid naked eye detection of mercury(ii). Analyst. 2013;139:3356–9. https://doi.org/10.1039/c4an00480a.

    Article  CAS  Google Scholar 

  19. Bian P, Xing L, Liu Z, Ma Z. Functionalized-tryptophan stabilized fluorescent Ag nanoclusters: synthesis and its application as Hg2+ ions sensor. Sensors Actuators B Chem. 2014;203:252–7. https://doi.org/10.1016/j.snb.2014.06.133.

    Article  CAS  Google Scholar 

  20. Stelzhammer V, Ozcan S, Michael G, Steeb H, Hodes GE, Guest C, et al. Diagnostics in Neuropsychiatry. 2015:88–93. https://doi.org/10.1016/j.dineu.2015.08.001.

  21. Jia X, Yang X, Li J, Li D, Wang E. Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun. 2014;50:237–9. https://doi.org/10.1039/c3cc47771a.

    Article  CAS  Google Scholar 

  22. Yang X, Feng Y, Zhu S, Luo Y, Zhuo Y, Dou Y. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by l-cysteine in aqueous solution. Anal Chim Acta. 2014;847:49–54. https://doi.org/10.1016/j.aca.2014.07.019.

    Article  CAS  PubMed  Google Scholar 

  23. Barthel MJ, Angeloni I, Petrelli A, Avellini T, Scarpellini A, Bertoni G, et al. Synthesis of highly fluorescent copper clusters using living polymer chains as combined reducing agents and ligands. ACS Nano. 2015;9:11886–97. https://doi.org/10.1021/acsnano.5b04270.

    Article  CAS  PubMed  Google Scholar 

  24. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46. https://doi.org/10.1016/S0032-9592(03)00258-9.

    Article  CAS  Google Scholar 

  25. Sonaimuthu M, Balakrishnan SB, Kuppu SV, Veerakanellore GB, Thambusamy S. Spectral and proton transfer behavior of 1,4-dihydroxylanthraquinone in aqueous and confined media; molecular modelling strategy. J Mol Liq. 2018;259:186–98. https://doi.org/10.1016/j.molliq.2018.03.042.

    Article  CAS  Google Scholar 

  26. Mohandoss S, Stalin T. Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones. Photochem Photobiol Sci. 2017;16:476–88. https://doi.org/10.1039/c6pp00285d.

    Article  CAS  PubMed  Google Scholar 

  27. Mohandoss S, Sivakamavalli J, Vaseeharan B, Stalin T. Host-guest molecular recognition based fluorescence on-off-on chemosensor for nanomolar level detection of Cu2+ and Cr2O72- ions: application in XNOR logic gate and human lung cancer living cell imaging. Sens Actuators, B Chem. 2016;234:300–15. https://doi.org/10.1016/j.snb.2016.04.148.

    Article  CAS  Google Scholar 

  28. Watanabe S, Sato S, Ohtsuka K, Takenaka S. Electrochemical DNA analysis with a supramolecular assembly of naphthalene diimide, ferrocene, and β-cyclodextrin. Anal Chem. 2011;83:7290–6. https://doi.org/10.1021/ac200989c.

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Cheng X, Justin Gooding J. Detection of trace nitroaromatic isomers using indium tin oxide electrodes modified using β-cyclodextrin and silver nanoparticles. Anal Chem. 2012;84:8557–63. https://doi.org/10.1021/ac3014675.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao X, Liu X, Lu M. β-Cyclodextrin-capped palladium nanoparticle-catalyzed ligand-free Suzuki and Heck couplings in low-melting β-cyclodextrin/NMU mixtures. Appl Organomet Chem. 2014;28:635–40. https://doi.org/10.1002/aoc.3173.

    Article  CAS  Google Scholar 

  31. Putta C, Sharavath V, Sarkar S, Ghosh S. Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C-C coupling reactions under green reaction conditions. RSC Adv. 2015;5:6652–60. https://doi.org/10.1039/c4ra14323j.

    Article  CAS  Google Scholar 

  32. Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, et al. An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta. 2014;182:815–22. https://doi.org/10.1007/s00604-014-1392-5.

    Article  CAS  Google Scholar 

  33. Wang M, Wu H, Chi Y, Chen G. Synthesis of Au13(glutathionato)8@β-cyclodextrin nanoclusters and their use as a fluorescent probe for silver ions. Microchim Acta. 2014;181:1573–80. https://doi.org/10.1007/s00604-014-1253-2.

    Article  CAS  Google Scholar 

  34. Zhong Y, He Y, Ge Y, Song G. β-Cyclodextrin protected Cu nanoclusters as a novel fluorescence sensor for graphene oxide in environmental water samples. Luminescence. 2017;32:596–601. https://doi.org/10.1002/bio.3226.

    Article  CAS  PubMed  Google Scholar 

  35. Lakkakula JR, Divakaran D, Thakur M, Kumawat MK, Srivastava R. Cyclodextrin-stabilized gold nanoclusters for bioimaging and selective label-free intracellular sensing of Co2+ ions. Sens Actuators, B Chem. 2018;262:270–81. https://doi.org/10.1016/j.snb.2018.01.219.

    Article  CAS  Google Scholar 

  36. Halawa MI, Wu F, Fereja TH, Lou B, Xu G. One-pot green synthesis of supramolecular Β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine. Sens Actuators, B Chem. 2018;254:1017–24. https://doi.org/10.1016/j.snb.2017.07.201.

    Article  CAS  Google Scholar 

  37. Ban R, Abdel-Halim ES, Zhang J, Zhu JJ. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst. 2015;140:1046–53. https://doi.org/10.1039/c4an02161d.

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Gao W, Xu W, Xu S. Fluorescent Ag nanoclusters templated by carboxymethyl-β-cyclodextrin (CM-β-CD) and their in vitro antimicrobial activity. Mater Sci Eng C. 2013;33:656–62. https://doi.org/10.1016/j.msec.2012.10.012.

    Article  CAS  Google Scholar 

  39. Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y. Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc. 2016;138:16645–54. https://doi.org/10.1021/jacs.6b07590.

    Article  CAS  PubMed  Google Scholar 

  40. Tang C, Qian Z, Huang Y, Xu J, Ao H, Zhao M, et al. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens Bioelectron. 2016;83:274–80. https://doi.org/10.1016/j.bios.2016.04.047.

    Article  CAS  PubMed  Google Scholar 

  41. Behbehani GR, Barzegar L. Thermal study of lysozyme binding with β-cyclodextrin. Appl Mech Mater. 2012;110–116:1966–9. https://doi.org/10.4028/www.scientific.net/AMM.110-116.1966.

    Article  CAS  Google Scholar 

  42. Yamamoto T, Fukui N, Hori A, Matsui Y. Circular dichroism and fluorescence spectroscopy studies of the effect of cyclodextrins on the thermal stability of chicken egg white lysozyme in aqueous solution. J Mol Struct. 2006;782:60–6. https://doi.org/10.1016/j.molstruc.2005.01.024.

    Article  CAS  Google Scholar 

  43. Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C. 2015;3:10715–22. https://doi.org/10.1039/b000000x.

    Article  Google Scholar 

  44. Senra JD, Malta LFB, Michel RC, Cordeiro Y, Simão RA, Simas ABC, et al. Hydrophilic cyclodextrin protected Pd nanoclusters: insights into their size control and host-guest behavior. J Mater Chem. 2011;21:13516–23. https://doi.org/10.1039/c1jm11962a.

    Article  CAS  Google Scholar 

  45. Sharma N, Baldi A. Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 2016;23:739–57. https://doi.org/10.3109/10717544.2014.938839.

    Article  CAS  PubMed  Google Scholar 

  46. Rigo A, Corazza A, Luisa Di Paolo M, Rossetto M, Ugolini R, Scarpa M. Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J Inorg Biochem. 2004;98:1495–501. https://doi.org/10.1016/j.jinorgbio.2004.06.008.

    Article  CAS  PubMed  Google Scholar 

  47. Eli I (1981) Laussnne -Printed in the Netherlands 85. 12:85–101.

  48. Mott D, Galkowski J, Wang L, Luo J, Zhong CJ. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 2007;23:5740–5. https://doi.org/10.1021/la0635092.

    Article  CAS  PubMed  Google Scholar 

  49. Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7:962–75. https://doi.org/10.1021/acs.jpclett.5b02765.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Z, Zhang CC, Gao J, Wang Q. Copper clusters-based luminescence assay for tetracycline and cellular imaging studies. J Lumin. 2017;190:115–22. https://doi.org/10.1016/j.jlumin.2017.05.038.

    Article  CAS  Google Scholar 

  51. Luo Y, Miao H, Yang X. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1. Talanta. 2015;144:488–95. https://doi.org/10.1016/j.talanta.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  52. Wang LL, Wang QL, Xu XY, Li JZ, Gao L, Bin, et al. Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors. J Mater Chem C. 2013;1:8033–40. https://doi.org/10.1039/c3tc31160k.

    Article  CAS  Google Scholar 

  53. Hu X, Liu T, Zhuang Y, Wang W, Li Y, Fan W, et al. Recent advances in the analytical applications of copper nanoclusters. TrAC - Trends Anal Chem. 2016;77:66–75. https://doi.org/10.1016/j.trac.2015.12.013.

    Article  CAS  Google Scholar 

  54. Cui M, Song G, Wang C, Song Q. Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Microchim Acta. 2015;182:1371–7. https://doi.org/10.1007/s00604-015-1458-z.

    Article  CAS  Google Scholar 

  55. Zhou T, Xu W, Yao Q, Zhao T, Chen X. Highly fluorescent copper nanoclusters as a probe for the determination of pH. Methods Appl Fluoresc. 2015;3:7. https://doi.org/10.1088/2050-6120/3/4/044002.

    Article  CAS  Google Scholar 

  56. Yuan X, Luo Z, Zhang Q, Zhang X, Zheng Y, Lee JY, et al. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano. 2011;5:8800–8. https://doi.org/10.1021/nn202860s.

    Article  CAS  PubMed  Google Scholar 

  57. Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63. https://doi.org/10.1039/c5cs00607d.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Z, Chen B, Susha AS, Wang W, Reckmeier CJ, Chen R, et al. All-copper nanocluster based down-conversion white light-emitting devices. Adv Sci. 2016;3. https://doi.org/10.1002/advs.201600182.

  59. Wang Z, Susha AS, Chen B, Reckmeier C, Tomanec O, Zboril R, et al. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale. 2016;8:7197–202. https://doi.org/10.1039/c6nr00806b.

    Article  CAS  PubMed  Google Scholar 

  60. Cao H, Chen Z, Zheng H, Huang Y. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron. 2014;62:189–95. https://doi.org/10.1016/j.bios.2014.06.049.

    Article  CAS  PubMed  Google Scholar 

  61. Boschen JS, Lee J, Windus TL, Evans JW, Liu DJ. Size dependence of S-bonding on (111) facets of Cu nanoclusters. J Phys Chem C. 2016;120:10268–74. https://doi.org/10.1021/acs.jpcc.6b00829.

    Article  CAS  Google Scholar 

  62. Krylova V, Andruleviçius M. Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy. 2009, 2009. https://doi.org/10.1155/2009/304308.

  63. Abarghoei S, Fakhri N, Borghei YS, Hosseini M, Ganjali MR. A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2019;210:251–9. https://doi.org/10.1016/j.saa.2018.11.026.

    Article  CAS  Google Scholar 

  64. Li W, Gao Z, Su R, Qi W, Wang L, He Z. Scissor-based fluorescent detection of pepsin using lysozyme-stabilized Au nanoclusters. Anal Methods. 2014;6:6789–95. https://doi.org/10.1039/c4ay00983e.

    Article  CAS  Google Scholar 

  65. Higashi T, Hirayama F, Yamashita S, Misumi S, Arima H, Uekama K. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins. Int J Pharm. 2009;374:26–32. https://doi.org/10.1016/j.ijpharm.2009.02.017.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto T, Kobayashi T, Yoshikiyo K, Matsui Y, Takahashi T, Aso Y. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin. J Mol Struct. 2009;920:264–9. https://doi.org/10.1016/j.molstruc.2008.10.058.

    Article  CAS  Google Scholar 

  67. Chen YM, Yu CJ, Cheng TL, Tseng WL. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir. 2008;24:3654–60. https://doi.org/10.1021/la7034642.

    Article  CAS  PubMed  Google Scholar 

  68. Wang C, Shu S, Yao Y, Song Q. A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Adv. 2015;5:101599–606. https://doi.org/10.1039/c5ra19421k.

    Article  CAS  Google Scholar 

  69. Desai A, Lee C, Sharma L, Sharma A. Lysozyme refolding with cyclodextrins: structure-activity relationship. Biochimie. 2006;88:1435–45. https://doi.org/10.1016/j.biochi.2006.05.008.

    Article  CAS  PubMed  Google Scholar 

  70. Borghei YS, Hosseini M, Ganjali MR. Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta. 2017;184:2671–7. https://doi.org/10.1007/s00604-017-2272-6.

    Article  CAS  Google Scholar 

  71. Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J, et al. Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron. 2013;50:239–43. https://doi.org/10.1016/j.bios.2013.06.026.

    Article  CAS  PubMed  Google Scholar 

  72. Mihai I, Vezeanu A, Polonschii C, Albu C, Radu GL, Vasilescu A. Label-free detection of lysozyme in wines using an aptamer based biosensor and SPR detection. Sensors Actuators B Chem. 2015;206:198–204. https://doi.org/10.1016/j.snb.2014.09.050.

    Article  CAS  Google Scholar 

  73. Chen Z, Guo J. A reagentless signal-off architecture for electrochemical aptasensor for the detection of lysozyme. Electrochim Acta. 2013;111:916–20. https://doi.org/10.1016/j.electacta.2013.08.116.

    Article  CAS  Google Scholar 

  74. Liu S, Na W, Pang S, Shi F, Su X. A label-free fluorescence detection strategy for lysozyme assay using CuInS2 quantum dots. Analyst. 2014;139:3048–54. https://doi.org/10.1039/c4an00160e.

    Article  CAS  PubMed  Google Scholar 

  75. Shrivas K, Nirmalkar N, Deb MK, Dewangan K, Nirmalkar J, Kumar S. Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2019;213:127–33. https://doi.org/10.1016/j.saa.2019.01.039.

    Article  CAS  Google Scholar 

  76. Zuo L, Qin G, Lan Y, Wei Y, Dong C. A turn-on phosphorescence aptasensor for ultrasensitive detection of lysozyme in humoral samples. Sensors Actuators B Chem. 2019;289:100–5. https://doi.org/10.1016/j.snb.2019.03.088.

    Article  CAS  Google Scholar 

  77. Saberi Z, Rezaei B, Rezaei P, Ensafi AA. Design a fluorometric aptasensor based on CoOOH nanosheets and carbon dots for simultaneous detection of lysozyme and adenosine triphosphate. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2020;233. https://doi.org/10.1016/j.saa.2020.118197.

  78. Chen S, Huang Z, Jia Q. Electrostatically confined in-situ preparation of stable glutathione-capped copper nanoclusters for fluorescence detection of lysozyme. Sensors Actuators B Chem. 2020;319:128305. https://doi.org/10.1016/j.snb.2020.128305.

    Article  CAS  Google Scholar 

  79. Li S, Gao Z, Shao N. Non-covalent conjugation of CdTe QDs with lysozyme binding DNA for fluorescent sensing of lysozyme in complex biological sample. Talanta. 2014;129:86–92. https://doi.org/10.1016/j.talanta.2014.04.062.

    Article  CAS  PubMed  Google Scholar 

  80. Halawa MI, Lai J, Xu G. Gold nanoclusters: synthetic strategies and recent advances in fluorescent sensing. Mater Today Nano. 2018;3:9–27. https://doi.org/10.1016/j.mtnano.2018.11.001.

    Article  Google Scholar 

  81. Ocaña C, Hayat A, Mishra R, Vasilescu A, Del Valle M, Marty JL. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection. Analyst. 2015;140:4148–53. https://doi.org/10.1039/c5an00243e.

    Article  PubMed  Google Scholar 

  82. Cai Z, Yu H, Ma M. Determination of lysozyme at the nanogram level in food sample using resonance Rayleigh-scattering method with Au nanoparticles as probe. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;78:1266–71. https://doi.org/10.1016/j.saa.2010.12.074.

    Article  CAS  Google Scholar 

  83. Vasilescu A, Gáspár S, Gheorghiu M, David S, Dinca V, Peteu S, et al. Surface plasmon resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces. Biosens Bioelectron. 2017;89:525–31. https://doi.org/10.1016/j.bios.2016.03.040.

    Article  CAS  PubMed  Google Scholar 

  84. Liao Y-H, Brown MB, Martin GP. Turbidimetric and HPLC assays for the determination of formulated lysozyme activity. J Pharm Pharmacol. 2001;53:549–54. https://doi.org/10.1211/0022357011775668.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of Taiwan (MOST) (MOST 107-2113-M-110-011-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Fen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

The human blood sample was collected from our lab donors. Human serum sample experiments were conducted after the informed consent of the donors and the approval of the ethics committee of National Sun Yat-Sen University 2018–2019.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaimuthu, M., Nerthigan, Y., Swaminathan, N. et al. Photoluminescent hydrophilic cyclodextrin-stabilized cysteine-protected copper nanoclusters for detecting lysozyme. Anal Bioanal Chem 412, 7141–7154 (2020). https://doi.org/10.1007/s00216-020-02847-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02847-7

Keywords

Navigation